These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23020109)

  • 21. Morphology and physiology of the olfactory system of blood-feeding insects.
    Guidobaldi F; May-Concha IJ; Guerenstein PG
    J Physiol Paris; 2014; 108(2-3):96-111. PubMed ID: 24836537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila.
    Jacob V; Scolari F; Delatte H; Gasperi G; Jacquin-Joly E; Malacrida AR; Duyck PF
    Sci Rep; 2017 Nov; 7(1):15304. PubMed ID: 29127313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Population coding is essential for rapid information processing in the moth antennal lobe.
    Kobayashi R; Namiki S; Kanzaki R; Kitano K; Nishikawa I; Lansky P
    Brain Res; 2013 Nov; 1536():88-96. PubMed ID: 23684715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae.
    Drimyli E; Gaitanidis A; Maniati K; Turin L; Skoulakis EM
    eNeuro; 2016; 3(3):. PubMed ID: 27351023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. System identification of Drosophila olfactory sensory neurons.
    Kim AJ; Lazar AA; Slutskiy YB
    J Comput Neurosci; 2011 Feb; 30(1):143-61. PubMed ID: 20730480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L.
    Zhukovskaya MI
    Chem Senses; 2012 Jun; 37(5):421-9. PubMed ID: 22281532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroantennogram and single sensillum recording in insect antennae.
    Olsson SB; Hansson BS
    Methods Mol Biol; 2013; 1068():157-77. PubMed ID: 24014360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural networks for signal processing applications: ECG classification.
    Mahalingam N; Kumar D
    Australas Phys Eng Sci Med; 1997 Sep; 20(3):147-51. PubMed ID: 9409015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational capacity of an odorant discriminator: the linear separability of curves.
    Caticha N; Tejada JE; Lancet D; Domany E
    Neural Comput; 2002 Sep; 14(9):2201-20. PubMed ID: 12184848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mimicking the olfactory system for the classification of chemical data.
    Neuhaus EM; Hatt H
    Trends Biotechnol; 2008 Jul; 26(7):347-9. PubMed ID: 18472173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DMP3: a dynamic multilayer perceptron construction algorithm.
    Andersen TL; Martinez TR
    Int J Neural Syst; 2001 Apr; 11(2):145-65. PubMed ID: 14632168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MEG source localization using an MLP with a distributed output representation.
    Jun SC; Pearlmutter BA; Nolte G
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):786-9. PubMed ID: 12814246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection.
    Du L; Wu C; Peng H; Zhao L; Huang L; Wang P
    Biosens Bioelectron; 2013 Feb; 40(1):401-6. PubMed ID: 23036770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. More than apples and oranges--detecting cancer with a fruit fly's antenna.
    Strauch M; Lüdke A; Münch D; Laudes T; Galizia CG; Martinelli E; Lavra L; Paolesse R; Ulivieri A; Catini A; Capuano R; Di Natale C
    Sci Rep; 2014 Jan; 4():3576. PubMed ID: 24389870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta.
    Ghaninia M; Olsson SB; Hansson BS
    Chem Senses; 2014 Oct; 39(8):655-71. PubMed ID: 25092901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network.
    Sun WZ; Jiang MY; Ren L; Dang J; You T; Yin FF
    Phys Med Biol; 2017 Aug; 62(17):6822-6835. PubMed ID: 28665297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamical feature extraction at the sensory periphery guides chemotaxis.
    Schulze A; Gomez-Marin A; Rajendran VG; Lott G; Musy M; Ahammad P; Deogade A; Sharpe J; Riedl J; Jarriault D; Trautman ET; Werner C; Venkadesan M; Druckmann S; Jayaraman V; Louis M
    Elife; 2015 Jun; 4():. PubMed ID: 26077825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensory specificity and speciation: a potential neuronal pathway for host fruit odour discrimination in Rhagoletis pomonella.
    Tait C; Batra S; Ramaswamy SS; Feder JL; Olsson SB
    Proc Biol Sci; 2016 Dec; 283(1845):. PubMed ID: 28003447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.