These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23020125)

  • 1. Quantitative dynamics of phosphoproteome: the devil is in the details.
    Salek M; Acuto O
    Anal Chem; 2012 Oct; 84(20):8431-6. PubMed ID: 23020125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry.
    Wang X; Stewart PA; Cao Q; Sang QX; Chung LW; Emmett MR; Marshall AG
    J Proteome Res; 2011 Sep; 10(9):3920-8. PubMed ID: 21786837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome.
    Ruprecht B; Roesli C; Lemeer S; Kuster B
    Proteomics; 2016 May; 16(10):1447-56. PubMed ID: 26990019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments.
    Casado P; Cutillas PR
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.003079. PubMed ID: 20972267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications.
    Iliuk AB; Arrington JV; Tao WA
    Electrophoresis; 2014 Dec; 35(24):3430-40. PubMed ID: 24890697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis.
    Brüning F; Humphrey SJ; Robles MS
    Methods Mol Biol; 2021; 2130():185-193. PubMed ID: 33284445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated immobilized metal affinity chromatography system for enrichment of Escherichia coli phosphoproteome.
    Qu Y; Wu S; Zhao R; Zink E; Orton DJ; Moore RJ; Meng D; Clauss TR; Aldrich JT; Lipton MS; Paša-Tolić L
    Electrophoresis; 2013 Jun; 34(11):1619-26. PubMed ID: 23494780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS.
    Lee J; Xu Y; Chen Y; Sprung R; Kim SC; Xie S; Zhao Y
    Mol Cell Proteomics; 2007 Apr; 6(4):669-76. PubMed ID: 17208939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling.
    Kweon HK; Andrews PC
    Methods; 2013 Jun; 61(3):251-9. PubMed ID: 23611819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies.
    Eyrich B; Sickmann A; Zahedi RP
    Proteomics; 2011 Feb; 11(4):554-70. PubMed ID: 21226000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis of the platelet plasma membrane.
    Premsler T; Lewandrowski U; Sickmann A; Zahedi RP
    Methods Mol Biol; 2011; 728():279-90. PubMed ID: 21468956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment techniques employed in phosphoproteomics.
    Fíla J; Honys D
    Amino Acids; 2012 Sep; 43(3):1025-47. PubMed ID: 22002794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.