These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23020357)

  • 1. Effect of photodiode angular response on surface plasmon resonance measurements in the Kretschmann-Raether configuration.
    Galvez F; Monton C; Serrano A; Valmianski I; de la Venta J; Schuller IK; Garcia MA
    Rev Sci Instrum; 2012 Sep; 83(9):093102. PubMed ID: 23020357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).
    Meyer SA; Le Ru EC; Etchegoin PG
    Anal Chem; 2011 Mar; 83(6):2337-44. PubMed ID: 21322587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index.
    Kasunic KJ
    Appl Opt; 2000 Jan; 39(1):61-4. PubMed ID: 18337870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic sensing using metallic nano-sculptured thin films.
    Abdulhalim I
    Small; 2014 Sep; 10(17):3499-514. PubMed ID: 24616387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance: theoretical evolutionary design optimization for a model analyte sensitive absorbing-layer system.
    Rooney JM; Hall EA
    Anal Chem; 2004 Dec; 76(23):6861-70. PubMed ID: 15571334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing.
    Live LS; Dhawan A; Gibson KF; Poirier-Richard HP; Graham D; Canva M; Vo-Dinh T; Masson JF
    Anal Bioanal Chem; 2012 Dec; 404(10):2859-68. PubMed ID: 22760504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of surface selection rule of surface plasmon resonance near-infrared spectroscopy by using a Langmuir-Blodgett film.
    Ohara K; Ikehata A; Hirano Y; Ozaki Y
    Anal Chem; 2007 Nov; 79(21):8406-10. PubMed ID: 17915939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance biomolecular recognition nanosystem: influence of the interfacial electrical potential.
    Lopatynskyi A; Guiver M; Chegel V
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6559-64. PubMed ID: 25924300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior.
    Yao M; Tan OK; Tjin SC; Wolfe JC
    Acta Biomater; 2008 Nov; 4(6):2016-27. PubMed ID: 18657495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm.
    Jang D; Chae G; Shin S
    Sensors (Basel); 2015 Sep; 15(10):25385-98. PubMed ID: 26437414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
    Oh GY; Kim DG; Choi YW
    Opt Express; 2009 Nov; 17(23):20714-20. PubMed ID: 19997302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Au/Ag Bimetallic Thin-Films on Surface Plasmon Resonance Properties Comparing with Those of Au and Ag Single Thin-Films.
    Kim SH; Kim TU; Jung HY; Ki HC; Kim DG; Lee BT
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1777-1781. PubMed ID: 29448658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films.
    Brolo AG; Gordon R; Leathem B; Kavanagh KL
    Langmuir; 2004 Jun; 20(12):4813-5. PubMed ID: 15984236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance near-infrared spectroscopy.
    Ikehata A; Itoh T; Ozaki Y
    Anal Chem; 2004 Nov; 76(21):6461-9. PubMed ID: 15516142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field electrospinning of dielectric-loaded surface plasmon polariton waveguides.
    Biagi G; Holmgaard T; Skovsen E
    Opt Express; 2013 Feb; 21(4):4355-60. PubMed ID: 23481968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors.
    Jang YH; Chung K; Quan LN; Špačková B; Šípová H; Moon S; Cho WJ; Shin HY; Jang YJ; Lee JE; Kochuveedu ST; Yoon MJ; Kim J; Yoon S; Kim JK; Kim D; Homola J; Kim DH
    Nanoscale; 2013 Dec; 5(24):12261-71. PubMed ID: 24150526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.