These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23020407)

  • 1. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.
    Tian W; Wu SC; Zhou ZB; Qu SB; Bai YZ; Luo J
    Rev Sci Instrum; 2012 Sep; 83(9):095002. PubMed ID: 23020407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
    Yan S; Xie Y; Zhang M; Deng Z; Tu L
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MEMS Micro-g Capacitive Accelerometer Based on Through-Silicon-Wafer-Etching Process.
    Rao K; Wei X; Zhang S; Zhang M; Hu C; Liu H; Tu LC
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise investigation of an electrostatic accelerometer by a high-voltage levitation method combined with a translation-tilt compensation pendulum bench.
    Hu S; Pei S; Hu M; Bai Y; Li H; Liu L; Yang B; Wu S; Zhou Z
    Rev Sci Instrum; 2021 Jun; 92(6):064502. PubMed ID: 34243500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications.
    Li Z; Wu WJ; Zheng PP; Liu JQ; Fan J; Tu LC
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-calibration method of the bias of a space electrostatic accelerometer.
    Qu SB; Xia XM; Bai YZ; Wu SC; Zhou ZB
    Rev Sci Instrum; 2016 Nov; 87(11):114502. PubMed ID: 27910446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Sensitivity Encoder-Like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer.
    Wu W; Zheng P; Liu J; Li Z; Fan J; Liu H; Tu L
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28930176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A torque type full tensor gravity gradiometer based on a flexure-strip suspension.
    Zhang TX; Bai YZ; Hong W; Ma Y; Qu SB; Yu LH; Wu SC; Zhou ZB
    Rev Sci Instrum; 2020 Jun; 91(6):064501. PubMed ID: 32611009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.
    Arefin MS; Redouté JM; Yuce MR
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):455-66. PubMed ID: 26954843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution quartz flexure accelerometer based on laser self-mixing interferometry.
    Wang C; Li X; Kou K; Wu T; Xiang H
    Rev Sci Instrum; 2015 Jun; 86(6):065001. PubMed ID: 26133862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Power-Efficiency Readout Circuit Employing Average Capacitance-to-Voltage Converter for Micro-Electro-Mechanical System Capacitive Accelerometers.
    Li L; Lai X; Wang Y; Niu Z
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of the scale factor balance on two pairs of quartz-flexure capacitive accelerometers by trimming bias voltage.
    Tu LC; Wang ZW; Liu JQ; Huang XQ; Li Z; Xie YF; Luo J
    Rev Sci Instrum; 2014 Sep; 85(9):095108. PubMed ID: 25273773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution MEMS inertial sensor combining large-displacement buckling behaviour with integrated capacitive readout.
    El Mansouri B; Middelburg LM; Poelma RH; Zhang GQ; van Zeijl HW; Wei J; Jiang H; Vogel JG; van Driel WD
    Microsyst Nanoeng; 2019; 5():60. PubMed ID: 34567613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.
    Lee HJ; Park KK; Kupnik M; Oralkan O; Khuri-Yakub BT
    Anal Chem; 2011 Dec; 83(24):9314-20. PubMed ID: 22124375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.
    Han F; Liu T; Li L; Wu Q
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.
    Royo G; Sánchez-Azqueta C; Gimeno C; Aldea C; Celma S
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.
    Li G; Wu SC; Zhou ZB; Bai YZ; Hu M; Luo J
    Rev Sci Instrum; 2013 Dec; 84(12):125004. PubMed ID: 24387459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved frequency/voltage converters for fast quartz crystal microbalance applications.
    Torres R; García JV; Arnau A; Perrot H; Kim LT; Gabrielli C
    Rev Sci Instrum; 2008 Apr; 79(4):045113. PubMed ID: 18447558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and compensation of quadratic terms of a space electrostatic accelerometer.
    Ma Y; Bai YZ; Li HY; Zhou ZB; Zhou Z
    Rev Sci Instrum; 2018 Nov; 89(11):114502. PubMed ID: 30501275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on Stray-Capacitance Influences of Coaxial Cables in Capacitive Transducers for a Space Inertial Sensor.
    Yu J; Wang C; Wang Y; Bai Y; Hu M; Li K; Li Z; Qu S; Wu S; Zhou Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.