These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23020441)
1. Estimating the largest Lyapunov exponent and noise level from chaotic time series. Yao TL; Liu HF; Xu JL; Li WF Chaos; 2012 Sep; 22(3):033102. PubMed ID: 23020441 [TBL] [Abstract][Full Text] [Related]
2. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
4. A novel method based on the pseudo-orbits to calculate the largest Lyapunov exponent from chaotic equations. Zhou S; Wang X; Wang Z; Zhang C Chaos; 2019 Mar; 29(3):033125. PubMed ID: 30927834 [TBL] [Abstract][Full Text] [Related]
5. A method of estimating the noise level in a chaotic time series. Jayawardena AW; Xu P; Li WK Chaos; 2008 Jun; 18(2):023115. PubMed ID: 18601482 [TBL] [Abstract][Full Text] [Related]
6. Largest Lyapunov Exponent Optimization for Control of a Bionic-Hand: A Brain Computer Interface Study. Hekmatmanesh A; Wu H; Handroos H Front Rehabil Sci; 2021; 2():802070. PubMed ID: 36188803 [TBL] [Abstract][Full Text] [Related]
7. Symbolic diffusion entropy rate of chaotic time series as a surrogate measure for the largest Lyapunov exponent. Shiozawa K; Miyano T Phys Rev E; 2019 Sep; 100(3-1):032221. PubMed ID: 31639895 [TBL] [Abstract][Full Text] [Related]
8. Effect of noise and filtering on largest Lyapunov exponent of time series associated with human walking. Mehdizadeh S; Sanjari MA J Biomech; 2017 Nov; 64():236-239. PubMed ID: 28958634 [TBL] [Abstract][Full Text] [Related]
9. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Gao JB; Hu J; Tung WW; Cao YH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136 [TBL] [Abstract][Full Text] [Related]
10. Modified correlation entropy estimation for a noisy chaotic time series. Jayawardena AW; Xu P; Li WK Chaos; 2010 Jun; 20(2):023104. PubMed ID: 20590300 [TBL] [Abstract][Full Text] [Related]
11. Identifying the linear region based on machine learning to calculate the largest Lyapunov exponent from chaotic time series. Zhou S; Wang X Chaos; 2018 Dec; 28(12):123118. PubMed ID: 30599513 [TBL] [Abstract][Full Text] [Related]
14. Chaotic operation by a single transistor circuit in the reverse active region. Hanias MP; Giannis IL; Tombras GS Chaos; 2010 Mar; 20(1):013105. PubMed ID: 20370260 [TBL] [Abstract][Full Text] [Related]
15. Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series. Moskalenko OI; Koronovskii AA; Hramov AE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012913. PubMed ID: 26274253 [TBL] [Abstract][Full Text] [Related]
16. Correlation dimension and the largest Lyapunov exponent characterization of RR interval. Lu HW; Chen YZ Space Med Med Eng (Beijing); 2003 Dec; 16(6):396-9. PubMed ID: 15008187 [TBL] [Abstract][Full Text] [Related]
17. Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method. Franchi M; Ricci L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062920. PubMed ID: 25615177 [TBL] [Abstract][Full Text] [Related]
18. Triggering and enhancing chaos with a prescribed target Lyapunov exponent using optimized perturbations of minimum power. Soong CY; Huang WT Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036206. PubMed ID: 17500768 [TBL] [Abstract][Full Text] [Related]
19. A robust method to estimate the largest Lyapunov exponent of noisy signals: A revision to the Rosenstein's algorithm. Mehdizadeh S J Biomech; 2019 Mar; 85():84-91. PubMed ID: 30670330 [TBL] [Abstract][Full Text] [Related]
20. Chaotic dynamics of one-dimensional systems with periodic boundary conditions. Kumar P; Miller BN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]