These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 23020443)
1. Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Bashkirtseva I; Chen G; Ryashko L Chaos; 2012 Sep; 22(3):033104. PubMed ID: 23020443 [TBL] [Abstract][Full Text] [Related]
2. Constructive analysis of noise-induced transitions for coexisting periodic attractors of the Lorenz model. Bashkirtseva I; Ryashko L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041106. PubMed ID: 19518172 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect. Bashkirtseva I; Ryashko L Chaos; 2011 Dec; 21(4):047514. PubMed ID: 22225388 [TBL] [Abstract][Full Text] [Related]
4. Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique. Bashkirtseva I; Ryashko L Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061109. PubMed ID: 21797304 [TBL] [Abstract][Full Text] [Related]
5. Constructive effects of noise in homoclinic chaotic systems. Zhou CS; Kurths J; Allaria E; Boccaletti S; Meucci R; Arecchi FT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066220. PubMed ID: 16241339 [TBL] [Abstract][Full Text] [Related]
6. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos. Zou Y; Donner RV; Kurths J Chaos; 2012 Mar; 22(1):013115. PubMed ID: 22462991 [TBL] [Abstract][Full Text] [Related]
7. Resonance phenomena controlled by external feedback signals and additive noise in neural systems. Nobukawa S; Shibata N; Nishimura H; Doho H; Wagatsuma N; Yamanishi T Sci Rep; 2019 Sep; 9(1):12630. PubMed ID: 31477740 [TBL] [Abstract][Full Text] [Related]
8. Stochastic bifurcation in a driven laser system: experiment and theory. Billings L; Schwartz IB; Morgan DS; Bollt EM; Meucci R; Allaria E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026220. PubMed ID: 15447578 [TBL] [Abstract][Full Text] [Related]
9. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566 [TBL] [Abstract][Full Text] [Related]
10. The chaotic sequences in the Bray-Liebhafsky reaction in an open reactor. Ivanović AZ; Cupić ZD; Janković MM; Kolar-Anić LjZ; Anić SR Phys Chem Chem Phys; 2008 Oct; 10(38):5848-58. PubMed ID: 18818837 [TBL] [Abstract][Full Text] [Related]
11. Noise-induced Hopf-bifurcation-type sequence and transition to chaos in the lorenz equations. Gao JB; Tung WW; Rao N Phys Rev Lett; 2002 Dec; 89(25):254101. PubMed ID: 12484887 [TBL] [Abstract][Full Text] [Related]
12. Canard oscillations in the randomly forced suspension flows. Bashkirtseva I; Ryashko L Chaos; 2021 Mar; 31(3):033129. PubMed ID: 33810748 [TBL] [Abstract][Full Text] [Related]
13. Transitions and statistical characteristics of vibrations in a bimodular oscillator. Ostrovsky LA; Starobinets IM Chaos; 1995 Sep; 5(3):496-500. PubMed ID: 12780205 [TBL] [Abstract][Full Text] [Related]
14. Noise-induced switching in dynamics of oscillating populations coupled by migration. Ryashko L; Belyaev A; Bashkirtseva I Chaos; 2023 Jun; 33(6):. PubMed ID: 37342023 [TBL] [Abstract][Full Text] [Related]
15. Confinement of dynamical chaos expansion in rotifer populations inhabiting heterogeneous environments: an effect of attractor size invariance. Gonik MM; Medvinsky AB Nonlinear Dynamics Psychol Life Sci; 2007 Apr; 11(2):185-96. PubMed ID: 17355811 [TBL] [Abstract][Full Text] [Related]
16. Quasipotential approach to critical scaling in noise-induced chaos. Tél T; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308 [TBL] [Abstract][Full Text] [Related]
17. Control of neural chaos by synaptic noise. Cortes JM; Torres JJ; Marro J Biosystems; 2007 Feb; 87(2-3):186-90. PubMed ID: 17084962 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis. Ryashko L Chaos; 2018 Mar; 28(3):033602. PubMed ID: 29604640 [TBL] [Abstract][Full Text] [Related]
19. Control of chaos by random noise in a system of two coupled perturbed van der Pol oscillators modeling an electrical discharge plasma. Cristescu CP; Stan C; Alexandroaei D Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016602. PubMed ID: 12241495 [TBL] [Abstract][Full Text] [Related]