These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 23020454)
61. Chimera states in purely local delay-coupled oscillators. Bera BK; Ghosh D Phys Rev E; 2016 May; 93(5):052223. PubMed ID: 27300896 [TBL] [Abstract][Full Text] [Related]
62. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
63. Emergence of multistability and strongly asymmetric collective modes in two quorum sensing coupled identical ring oscillators. Hellen EH; Volkov E Chaos; 2020 Dec; 30(12):121101. PubMed ID: 33380051 [TBL] [Abstract][Full Text] [Related]
64. Abnormal route to aging transition in a network of coupled oscillators. Rakshit B; Rajendrakumar N; Balaram B Chaos; 2020 Oct; 30(10):101101. PubMed ID: 33138470 [TBL] [Abstract][Full Text] [Related]
65. Mixed-mode oscillation suppression states in coupled oscillators. Ghosh D; Banerjee T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052913. PubMed ID: 26651768 [TBL] [Abstract][Full Text] [Related]
66. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps. Bashkirtseva I; Ryashko L Chaos; 2021 May; 31(5):053101. PubMed ID: 34240946 [TBL] [Abstract][Full Text] [Related]
68. Steady-state statistics, emergent patterns and intermittent energy transfer in a ring of oscillators. Pedergnana T; Noiray N Nonlinear Dyn; 2022; 108(2):1133-1163. PubMed ID: 35465412 [TBL] [Abstract][Full Text] [Related]
69. Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators. Borkowski L; Perlikowski P; Kapitaniak T; Stefanski A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062906. PubMed ID: 26172771 [TBL] [Abstract][Full Text] [Related]
70. Embedding the dynamics of a single delay system into a feed-forward ring. Klinshov V; Shchapin D; Yanchuk S; Wolfrum M; D'Huys O; Nekorkin V Phys Rev E; 2017 Oct; 96(4-1):042217. PubMed ID: 29347517 [TBL] [Abstract][Full Text] [Related]
71. Aging transition in the absence of inactive oscillators. Sathiyadevi K; Gowthaman I; Senthilkumar DV; Chandrasekar VK Chaos; 2019 Dec; 29(12):123117. PubMed ID: 31893654 [TBL] [Abstract][Full Text] [Related]
72. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators. Wolfrum M; Omel'chenko OE; Sieber J Chaos; 2015 May; 25(5):053113. PubMed ID: 26026325 [TBL] [Abstract][Full Text] [Related]
73. Chaotic motion of propagating pulses in the Gray-Scott model. Yadome M; Ueda K; Nagayama M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056207. PubMed ID: 21728630 [TBL] [Abstract][Full Text] [Related]
74. Complex localization mechanisms in networks of coupled oscillators: Two case studies. Nicolaou ZG; Bramburger JJ Chaos; 2024 Jan; 34(1):. PubMed ID: 38252783 [TBL] [Abstract][Full Text] [Related]
75. Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile. Martínez PJ; Meister M; Floría LM; Falo F Chaos; 2003 Jun; 13(2):610-23. PubMed ID: 12777126 [TBL] [Abstract][Full Text] [Related]
76. Phase-flip bifurcation induced by time delay. Prasad A; Kurths J; Dana SK; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035204. PubMed ID: 17025693 [TBL] [Abstract][Full Text] [Related]
77. A Bonhoeffer-van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons. Nomura T; Sato S; Doi S; Segundo JP; Stiber MD Biol Cybern; 1993; 69(5-6):429-37. PubMed ID: 8274541 [TBL] [Abstract][Full Text] [Related]
78. Synchronization of coupled bistable chaotic systems: experimental study. Pisarchik AN; Jaimes-Reátegui R; García-López JH Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):459-73. PubMed ID: 17681912 [TBL] [Abstract][Full Text] [Related]
79. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation. Schneider I Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230 [TBL] [Abstract][Full Text] [Related]
80. Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system near a codimension-two bifurcation. Bose S; Rodin P; Scholl E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1778-89. PubMed ID: 11088640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]