These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 23020465)
1. Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2012 Sep; 22(3):033126. PubMed ID: 23020465 [TBL] [Abstract][Full Text] [Related]
2. Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2015 Oct; 25(10):103101. PubMed ID: 26520067 [TBL] [Abstract][Full Text] [Related]
3. Bifurcation phenomena in two-dimensional piecewise smooth discontinuous maps. Rakshit B; Apratim M; Banerjee S Chaos; 2010 Sep; 20(3):033101. PubMed ID: 20887041 [TBL] [Abstract][Full Text] [Related]
4. Local and global bifurcations in 3D piecewise smooth discontinuous maps. Patra M; Gupta S; Banerjee S Chaos; 2021 Jan; 31(1):013126. PubMed ID: 33754746 [TBL] [Abstract][Full Text] [Related]
7. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices. Giberti C; Vernia C Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map. Akaishi A; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258 [TBL] [Abstract][Full Text] [Related]
9. A direct transition to chaos in hysteretic systems with focus dynamics. Esteban M; Ponce E; Torres F Chaos; 2019 Oct; 29(10):103111. PubMed ID: 31675810 [TBL] [Abstract][Full Text] [Related]
10. Synchronized states and multistability in a random network of coupled discontinuous maps. Nag M; Poria S Chaos; 2015 Aug; 25(8):083114. PubMed ID: 26328565 [TBL] [Abstract][Full Text] [Related]
12. Regular and chaotic dynamics of a piecewise smooth bouncer. Langer CK; Miller BN Chaos; 2015 Jul; 25(7):073114. PubMed ID: 26232965 [TBL] [Abstract][Full Text] [Related]
13. Codimension-three bifurcations: explanation of the complex one-, two-, and three-dimensional bifurcation structures in nonsmooth maps. Avrutin V; Schanz M; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066205. PubMed ID: 17677338 [TBL] [Abstract][Full Text] [Related]
14. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results. Belykh VN; Barabash NV; Belykh IV Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821 [TBL] [Abstract][Full Text] [Related]
15. Exploring chaos and ergodic behavior of an inductorless circuit driven by stochastic parameters. Seth S; Bera A; Pakrashi V Nonlinear Dyn; 2024; 112(21):19441-19462. PubMed ID: 39219722 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of a piecewise smooth area-preserving map. Wang J; Ding XL; Hu B; Wang BH; Mao JS; He DR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026202. PubMed ID: 11497672 [TBL] [Abstract][Full Text] [Related]
17. 2D discontinuous piecewise linear map: Emergence of fashion cycles. Gardini L; Sushko I; Matsuyama K Chaos; 2018 May; 28(5):055917. PubMed ID: 29857690 [TBL] [Abstract][Full Text] [Related]
18. Using periodic orbits to compute chaotic transport rates between resonance zones. Sattari S; Mitchell KA Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324 [TBL] [Abstract][Full Text] [Related]
19. Unfolding homoclinic connections formed by corner intersections in piecewise-smooth maps. Simpson DJ Chaos; 2016 Jul; 26(7):073105. PubMed ID: 27475065 [TBL] [Abstract][Full Text] [Related]
20. Statistical properties of actions of periodic orbits. Sano MM Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]