These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23020496)

  • 1. Horizontally propagating three-dimensional chemo-hydrodynamic patterns in the chlorite-tetrathionate reaction.
    Pópity-Tóth É; Horváth D; Tóth Á
    Chaos; 2012 Sep; 22(3):037105. PubMed ID: 23020496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional convection-driven fronts of the exothermic chlorite-tetrathionate reaction.
    Schuszter G; Pótári G; Horváth D; Tóth Á
    Chaos; 2015 Jun; 25(6):064501. PubMed ID: 26117124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convective instabilities in horizontally propagating vertical chemical fronts.
    Schuszter G; Tóth T; Horváth D; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016216. PubMed ID: 19257131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.
    Rongy L; De Wit A
    J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory and stationary convective patterns in a reaction driven gravity current.
    Miholics O; Rica T; Horváth D; Tóth Á
    J Chem Phys; 2011 Nov; 135(20):204501. PubMed ID: 22128937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front.
    Liu Y; Ren X; Pan C; Zheng T; Yuan L; Zheng J; Gao Q
    Chaos; 2017 Oct; 27(10):104610. PubMed ID: 29092443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.
    Budroni MA; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration-driven instability in the chlorite-tetrathionate reaction.
    Viranyi Z; Horvath D; Tóth A
    J Phys Chem A; 2006 Mar; 110(10):3614-8. PubMed ID: 16526642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot spots in density fingering of exothermic autocatalytic chemical fronts.
    Gérard T; Tóth T; Grosfils P; Horváth D; De Wit A; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016322. PubMed ID: 23005540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convection-Induced Fingering Fronts in the Chlorite-Trithionate Reaction.
    Liu Y; Zhou W; Zheng T; Zhao Y; Gao Q; Pan C; Horváth AK
    J Phys Chem A; 2016 Apr; 120(16):2514-20. PubMed ID: 27059304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convective instability of an acidity front in Hele-Shaw cells.
    Bánsági T; Horváth D; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026303. PubMed ID: 14525101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers.
    Rongy L; Assemat P; De Wit A
    Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dependence of scaling law on stoichiometry for horizontally propagating vertical chemical fronts.
    Pópity-Tóth É; Horváth D; Tóth Á
    J Chem Phys; 2011 Aug; 135(7):074506. PubMed ID: 21861575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts.
    Tiani R; De Wit A; Rongy L
    Adv Colloid Interface Sci; 2018 May; 255():76-83. PubMed ID: 28826815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.