BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23020498)

  • 1. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts.
    Levitán D; D'Onofrio A
    Chaos; 2012 Sep; 22(3):037107. PubMed ID: 23020498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells.
    Vasquez DA; De Wit A
    J Chem Phys; 2004 Jul; 121(2):935-41. PubMed ID: 15260625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Front fingering and complex dynamics driven by the interaction of buoyancy and diffusive instabilities.
    D'Hernoncourt J; Merkin JH; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035301. PubMed ID: 17930295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of porosity on Rayleigh-Taylor instabilities in reaction-diffusion systems.
    Macias L; Müller D; D'Onofrio A
    Phys Rev Lett; 2009 Mar; 102(9):094501. PubMed ID: 19392524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convection-Induced Fingering Fronts in the Chlorite-Trithionate Reaction.
    Liu Y; Zhou W; Zheng T; Zhao Y; Gao Q; Pan C; Horváth AK
    J Phys Chem A; 2016 Apr; 120(16):2514-20. PubMed ID: 27059304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.
    Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A
    Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of an electric field on the buoyancy-driven instabilities.
    Zadrazil A; Sevcíková H
    J Chem Phys; 2005 Nov; 123(17):174509. PubMed ID: 16375548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell.
    Martin J; Rakotomalala N; Salin D; Böckmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convective instability of an acidity front in Hele-Shaw cells.
    Bánsági T; Horváth D; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026303. PubMed ID: 14525101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot spots in density fingering of exothermic autocatalytic chemical fronts.
    Gérard T; Tóth T; Grosfils P; Horváth D; De Wit A; Tóth A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016322. PubMed ID: 23005540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls.
    D'Hernoncourt J; Kalliadasis S; De Wit A
    J Chem Phys; 2005 Dec; 123(23):234503. PubMed ID: 16392927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convective instabilities derived from dissipation of chemical energy.
    Simoyi RH
    Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.
    Bunton PH; Tullier MP; Meiburg E; Pojman JA
    Chaos; 2017 Oct; 27(10):104614. PubMed ID: 29092415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator.
    Kuster S; Riolfo LA; Zalts A; El Hasi C; Almarcha C; Trevelyan PM; De Wit A; D'Onofrio A
    Phys Chem Chem Phys; 2011 Oct; 13(38):17295-303. PubMed ID: 21881652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of linear and nonlinear regimes of density-driven instabilities induced by CO(2) dissolution in water.
    Outeda R; El Hasi C; D'Onofrio A; Zalts A
    Chaos; 2014 Mar; 24(1):013135. PubMed ID: 24697397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.