BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23020520)

  • 1. Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single-photon detector.
    Sandberg RL; Padilha LA; Qazilbash MM; Bae WK; Schaller RD; Pietryga JM; Stevens MJ; Baek B; Nam SW; Klimov VI
    ACS Nano; 2012 Nov; 6(11):9532-40. PubMed ID: 23020520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposal for a superconducting photon number resolving detector with large dynamic range.
    Jahanmirinejad S; Fiore A
    Opt Express; 2012 Feb; 20(5):5017-28. PubMed ID: 22418306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic superconducting nanowire single photon detector.
    Eftekharian A; Atikian H; Majedi AH
    Opt Express; 2013 Feb; 21(3):3043-54. PubMed ID: 23481762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified detector tomography technique applied to a superconducting multiphoton nanodetector.
    Renema JJ; Frucci G; Zhou Z; Mattioli F; Gaggero A; Leoni R; de Dood MJ; Fiore A; van Exter MP
    Opt Express; 2012 Jan; 20(3):2806-13. PubMed ID: 22330516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector.
    Gemmell NR; McCarthy A; Liu B; Tanner MG; Dorenbos SD; Zwiller V; Patterson MS; Buller GS; Wilson BC; Hadfield RH
    Opt Express; 2013 Feb; 21(4):5005-13. PubMed ID: 23482033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed and high-efficiency superconducting nanowire single photon detector array.
    Rosenberg D; Kerman AJ; Molnar RJ; Dauler EA
    Opt Express; 2013 Jan; 21(2):1440-7. PubMed ID: 23389125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.
    Hofherr M; Wetzstein O; Engert S; Ortlepp T; Berg B; Ilin K; Henrich D; Stolz R; Toepfer H; Meyer HG; Siegel M
    Opt Express; 2012 Dec; 20(27):28683-97. PubMed ID: 23263106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system.
    Miki S; Takeda M; Fujiwara M; Sasaki M; Wang Z
    Opt Express; 2009 Dec; 17(26):23557-64. PubMed ID: 20052064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots.
    Koleilat GI; Levina L; Shukla H; Myrskog SH; Hinds S; Pattantyus-Abraham AG; Sargent EH
    ACS Nano; 2008 May; 2(5):833-40. PubMed ID: 19206479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors.
    Akhlaghi MK; Atikian H; Eftekharian A; Loncar M; Majedi AH
    Opt Express; 2012 Oct; 20(21):23610-6. PubMed ID: 23188325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing individual terahertz photons.
    Hashiba H; Antonov V; Kulik L; Tzalenchuk A; Komiyama S
    Nanotechnology; 2010 Apr; 21(16):165203. PubMed ID: 20348600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient single photon detection from 500 nm to 5 μm wavelength.
    Marsili F; Bellei F; Najafi F; Dane AE; Dauler EA; Molnar RJ; Berggren KK
    Nano Lett; 2012 Sep; 12(9):4799-804. PubMed ID: 22889386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier multiplication in semiconductor nanocrystals: influence of size, shape, and composition.
    Padilha LA; Stewart JT; Sandberg RL; Bae WK; Koh WK; Pietryga JM; Klimov VI
    Acc Chem Res; 2013 Jun; 46(6):1261-9. PubMed ID: 23530867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit.
    Schaller RD; Pietryga JM; Klimov VI
    Nano Lett; 2007 Nov; 7(11):3469-76. PubMed ID: 17967043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation.
    Patil D; Dung NQ; Jung H; Ahn SY; Jang DM; Kim D
    Biosens Bioelectron; 2012 Jan; 31(1):176-81. PubMed ID: 22035972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared response of a single carbon nanocoil.
    Ma H; Pan L; Zhao Q; Peng W
    Nanoscale; 2013 Feb; 5(3):1153-8. PubMed ID: 23288029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime.
    Gerrits T; Calkins B; Tomlin N; Lita AE; Migdall A; Mirin R; Nam SW
    Opt Express; 2012 Oct; 20(21):23798-810. PubMed ID: 23188345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator.
    Kalchmair S; Gansch R; Ahn SI; Andrews AM; Detz H; Zederbauer T; Mujagić E; Reininger P; Lasser G; Schrenk W; Strasser G
    Opt Express; 2012 Feb; 20(5):5622-8. PubMed ID: 22418369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoresonant signal boosters for carbon nanotube based infrared detectors.
    Fung CK; Xi N; Shanker B; Lai KW
    Nanotechnology; 2009 May; 20(18):185201. PubMed ID: 19420605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.