These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Sadahiro T; Yamanaka S; Ieda M Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064 [TBL] [Abstract][Full Text] [Related]
3. Direct reprogramming of mouse fibroblasts into cardiac myocytes. Inagawa K; Ieda M J Cardiovasc Transl Res; 2013 Feb; 6(1):37-45. PubMed ID: 23054660 [TBL] [Abstract][Full Text] [Related]
4. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration. He WJ; Hou Q; Han QW; Han WD; Fu XB Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625 [TBL] [Abstract][Full Text] [Related]
7. From fibroblast cells to cardiomyocytes: direct lineage reprogramming. Yang L Stem Cell Res Ther; 2011 Jan; 2(1):1. PubMed ID: 21241459 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Cellular Reprogramming: The Next Generation. Srivastava D; DeWitt N Cell; 2016 Sep; 166(6):1386-1396. PubMed ID: 27610565 [TBL] [Abstract][Full Text] [Related]
10. Intermediate Reprogramming of Mouse Skin Fibroblasts into Stem-Like Cells by Bone Morphogenetic Protein 4. Lee SE; Uhm SJ; Son YJ; Park YG; Kim EY; Park SP Cell Reprogram; 2017 Apr; 19(2):107-115. PubMed ID: 28170287 [TBL] [Abstract][Full Text] [Related]
11. The Future of Direct Cardiac Reprogramming: Any López-Muneta L; Miranda-Arrubla J; Carvajal-Vergara X Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114756 [TBL] [Abstract][Full Text] [Related]
12. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Ebrahimi B Tissue Cell; 2016 Oct; 48(5):475-87. PubMed ID: 27514850 [TBL] [Abstract][Full Text] [Related]
13. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells. Biswas D; Jiang P Int J Mol Sci; 2016 Feb; 17(2):226. PubMed ID: 26861316 [TBL] [Abstract][Full Text] [Related]
14. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine. Xie M; Tang S; Li K; Ding S Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285 [TBL] [Abstract][Full Text] [Related]
15. FoxO3a contributes to the reprogramming process and the differentiation of induced pluripotent stem cells. Wang Y; Tian C; Zheng JC Stem Cells Dev; 2013 Nov; 22(22):2954-63. PubMed ID: 23815557 [TBL] [Abstract][Full Text] [Related]
16. Intermediate Standstill Clones Trapped in the Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Zhang L; Wang Y; Zhang Y; Wang L; Huang H Cell Reprogram; 2020 Apr; 22(2):99-105. PubMed ID: 32182120 [TBL] [Abstract][Full Text] [Related]
17. In vivo reprogramming for tissue regeneration and organismal rejuvenation. Taguchi J; Yamada Y Curr Opin Genet Dev; 2017 Oct; 46():132-140. PubMed ID: 28779646 [TBL] [Abstract][Full Text] [Related]
18. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Morris SA; Daley GQ Cell Res; 2013 Jan; 23(1):33-48. PubMed ID: 23277278 [TBL] [Abstract][Full Text] [Related]
19. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Horisawa K; Suzuki A Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(4):131-158. PubMed ID: 32281550 [TBL] [Abstract][Full Text] [Related]
20. The Promise of Cardiac Regeneration by In Situ Lineage Conversion. Nam YJ; Munshi NV Circulation; 2017 Mar; 135(10):914-916. PubMed ID: 28264888 [No Abstract] [Full Text] [Related] [Next] [New Search]