BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

711 related articles for article (PubMed ID: 23020854)

  • 21. Toward directed reprogramming through exogenous factors.
    Lin C; Yu C; Ding S
    Curr Opin Genet Dev; 2013 Oct; 23(5):519-25. PubMed ID: 23932127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced pluripotent reprogramming from promiscuous human stemness related factors.
    Nelson TJ; Martinez-Fernandez A; Yamada S; Mael AA; Terzic A; Ikeda Y
    Clin Transl Sci; 2009 Apr; 2(2):118-26. PubMed ID: 20161095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights and applications of direct neuronal reprogramming.
    Schaukowitch K; Janas JA; Wernig M
    Curr Opin Genet Dev; 2023 Dec; 83():102128. PubMed ID: 37862835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induced regeneration--the progress and promise of direct reprogramming for heart repair.
    Addis RC; Epstein JA
    Nat Med; 2013 Jul; 19(7):829-36. PubMed ID: 23836233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partial reprogramming as a therapeutic approach for heart disease: A state-of-the-art review.
    Talkhabi M
    J Cell Biochem; 2019 Sep; 120(9):14247-14261. PubMed ID: 31081174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.
    Chen F; Zhang G; Yu L; Feng Y; Li X; Zhang Z; Wang Y; Sun D; Pradhan S
    Stem Cell Res Ther; 2016 Jul; 7(1):99. PubMed ID: 27473118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.
    Li X; Liu D; Ma Y; Du X; Jing J; Wang L; Xie B; Sun D; Sun S; Jin X; Zhang X; Zhao T; Guan J; Yi Z; Lai W; Zheng P; Huang Z; Chang Y; Chai Z; Xu J; Deng H
    Cell Stem Cell; 2017 Aug; 21(2):264-273.e7. PubMed ID: 28648365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system.
    Drozd AM; Walczak MP; Piaskowski S; Stoczynska-Fidelus E; Rieske P; Grzela DP
    Stem Cell Res Ther; 2015 Jun; 6(1):122. PubMed ID: 26088261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair.
    He X; Liang J; Paul C; Huang W; Dutta S; Wang Y
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reprogramming Enhancers in Somatic Cell Nuclear Transfer, iPSC Technology, and Direct Conversion.
    Kwon D; Ji M; Lee S; Seo KW; Kang KS
    Stem Cell Rev Rep; 2017 Feb; 13(1):24-34. PubMed ID: 27817181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine.
    Skalova S; Svadlakova T; Shaikh Qureshi WM; Dev K; Mokry J
    Int J Mol Sci; 2015 Feb; 16(2):4043-67. PubMed ID: 25689424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
    Bektik E; Fu JD
    Methods Mol Biol; 2021; 2239():33-46. PubMed ID: 33226611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct lineage reprogramming: strategies, mechanisms, and applications.
    Xu J; Du Y; Deng H
    Cell Stem Cell; 2015 Feb; 16(2):119-34. PubMed ID: 25658369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine.
    Zhang Y; Hu W; Ma K; Zhang C; Fu X
    Stem Cell Rev Rep; 2019 Oct; 15(5):680-689. PubMed ID: 31197578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes.
    Wang M; Ling W; Xiong C; Xie D; Chu X; Li Y; Qiu X; Li Y; Xiao X
    Cell Reprogram; 2019 Apr; 21(2):63-77. PubMed ID: 30907633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts.
    Fernandez-Perez A; Munshi NV
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.
    Zheng J; Choi KA; Kang PJ; Hyeon S; Kwon S; Moon JH; Hwang I; Kim YI; Kim YS; Yoon BS; Park G; Lee J; Hong S; You S
    Biochem Biophys Res Commun; 2016 Jul; 476(1):42-8. PubMed ID: 27207831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
    Treutlein B; Lee QY; Camp JG; Mall M; Koh W; Shariati SA; Sim S; Neff NF; Skotheim JM; Wernig M; Quake SR
    Nature; 2016 Jun; 534(7607):391-5. PubMed ID: 27281220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of Induced Pluripotent Stem Cells (iPSCs) from Adult Canine Fibroblasts.
    Koh S; Piedrahita JA
    Methods Mol Biol; 2015; 1330():69-78. PubMed ID: 26621590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical compound-based direct reprogramming for future clinical applications.
    Takeda Y; Harada Y; Yoshikawa T; Dai P
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29739872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.