These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23020951)

  • 1. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role.
    Iwasaki Y; Yada T
    Neuropeptides; 2012 Dec; 46(6):291-7. PubMed ID: 23020951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancreatic polypeptide and peptide YY3-36 induce Ca2+ signaling in nodose ganglion neurons.
    Iwasaki Y; Kakei M; Nakabayashi H; Ayush EA; Hirano-Kodaira M; Maejima Y; Yada T
    Neuropeptides; 2013 Feb; 47(1):19-23. PubMed ID: 22944736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats.
    Koda S; Date Y; Murakami N; Shimbara T; Hanada T; Toshinai K; Niijima A; Furuya M; Inomata N; Osuye K; Nakazato M
    Endocrinology; 2005 May; 146(5):2369-75. PubMed ID: 15718279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent signals regulating food intake.
    Bray GA
    Proc Nutr Soc; 2000 Aug; 59(3):373-84. PubMed ID: 10997653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecystokinin and gut-brain signalling.
    Dockray GJ
    Regul Pept; 2009 Jun; 155(1-3):6-10. PubMed ID: 19345244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-gut axis and its role in the control of food intake.
    Konturek SJ; Konturek JW; Pawlik T; Brzozowski T
    J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel preparation to study rat pancreatic spinal and vagal mechanosensitive afferents in vitro.
    Schloithe AC; Sutherland K; Woods CM; Blackshaw LA; Davison JS; Toouli J; Saccone GT
    Neurogastroenterol Motil; 2008 Sep; 20(9):1060-9. PubMed ID: 18482253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca(2+) signaling via glucagon receptors.
    Ayush EA; Iwasaki Y; Iwamoto S; Nakabayashi H; Kakei M; Yada T
    Biochem Biophys Res Commun; 2015 Jan; 456(3):727-32. PubMed ID: 25511693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin.
    Peters JH; Karpiel AB; Ritter RC; Simasko SM
    Endocrinology; 2004 Aug; 145(8):3652-7. PubMed ID: 15105382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut peptides and postprandial satiety.
    Smith GP; Gibbs J
    Fed Proc; 1984 Nov; 43(14):2889-92. PubMed ID: 6149153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut peptide signaling in the controls of food intake.
    Moran TH
    Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():250S-253S. PubMed ID: 17021376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Gastrointestinal hormones in food intake control].
    Crespo MA; González Matías LC; Lozano MG; Paz SF; Pérez MR; Gago EV; Ferrer FM
    Endocrinol Nutr; 2009; 56(6):317-30. PubMed ID: 19695513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of efferent and afferent vagal nerve activity during reproduction: integrating function of oxytocin on metabolism and behaviour.
    Uvnäs-Moberg K
    Psychoneuroendocrinology; 1994; 19(5-7):687-95. PubMed ID: 7938364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastrointestinal hormones and the dialogue between gut and brain.
    Dockray GJ
    J Physiol; 2014 Jul; 592(14):2927-41. PubMed ID: 24566540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of cholecystokinin (CCK 1) and serotonin (5-HT 3) receptors increases the discharge of pancreatic vagal afferents.
    Mussa BM; Sartor DM; Verberne AJ
    Eur J Pharmacol; 2008 Dec; 601(1-3):198-206. PubMed ID: 19026634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 2003 Jan; 455(2):222-37. PubMed ID: 12454987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology of eating behavior in obesity.
    Schwartz GJ
    Obes Res; 2004 Nov; 12 Suppl 2():102S-6S. PubMed ID: 15601957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.