BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23021518)

  • 1. Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply.
    Rowny JG; Stewart JR
    Water Res; 2012 Nov; 46(18):6143-53. PubMed ID: 23021518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.
    Stumpf CH; Piehler MF; Thompson S; Noble RT
    Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach.
    Cho KH; Cha SM; Kang JH; Lee SW; Park Y; Kim JW; Kim JH
    Water Res; 2010 Apr; 44(7):2189-202. PubMed ID: 20138642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing.
    Noble RT; Moore DF; Leecaster MK; McGee CD; Weisberg SB
    Water Res; 2003 Apr; 37(7):1637-43. PubMed ID: 12600392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasts in concentrations and loads of conventional and alternative indicators of fecal contamination in coastal stormwater.
    Converse RR; Piehler MF; Noble RT
    Water Res; 2011 Oct; 45(16):5229-40. PubMed ID: 21840561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in southern California.
    Reeves RL; Grant SB; Mrse RD; Copil Oancea CM; Sanders BF; Boehm AB
    Environ Sci Technol; 2004 May; 38(9):2637-48. PubMed ID: 15180060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growing season surface water loading of fecal indicator organisms within a rural watershed.
    Sinclair A; Hebb D; Jamieson R; Gordon R; Benedict K; Fuller K; Stratton GW; Madani A
    Water Res; 2009 Mar; 43(5):1199-206. PubMed ID: 19117588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HuBac and nifH source tracking markers display a relationship to land use but not rainfall.
    Gentry-Shields J; Rowny JG; Stewart JR
    Water Res; 2012 Nov; 46(18):6163-74. PubMed ID: 23021338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Storm effects on regional beach water quality along the southern California shoreline.
    Noble RT; Weisberg SB; Leecaster MK; McGee CD; Dorsey JH; Vainik P; Orozco-Borbón V
    J Water Health; 2003 Mar; 1(1):23-31. PubMed ID: 15384270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds.
    Lewis DJ; Atwill ER; Lennox MS; Hou L; Karle B; Tate KW
    Environ Monit Assess; 2005 Aug; 107(1-3):407-25. PubMed ID: 16418926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli loading at or near base flow in a mixed-use watershed.
    Gentry RW; McCarthy J; Layton A; McKay LD; Williams D; Koirala SR; Sayler GS
    J Environ Qual; 2006; 35(6):2244-9. PubMed ID: 17071895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of discharge, TSS, and E. coli to rainfall events in urban, suburban, and rural watersheds.
    Chen HJ; Chang H
    Environ Sci Process Impacts; 2014; 16(10):2313-24. PubMed ID: 25096028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-storm variability in microbial partitioning and microbial loading rates.
    Krometis LA; Characklis GW; Simmons OD; Dilts MJ; Likirdopulos CA; Sobsey MD
    Water Res; 2007 Jan; 41(2):506-16. PubMed ID: 17141293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds.
    Tiefenthaler L; Stein ED; Schiff KC
    J Water Health; 2011 Jun; 9(2):279-90. PubMed ID: 21942193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry and wet weather microbial characterization of the Chicago area waterway system.
    Rijal G; Petropoulou C; Tolson JK; DeFlaun M; Gerba C; Gore R; Glymph T; Granato T; O'Connor C; Kollias L; Lanyon R
    Water Sci Technol; 2009; 60(7):1847-55. PubMed ID: 19809148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia.
    Sidhu JP; Hodgers L; Ahmed W; Chong MN; Toze S
    Water Res; 2012 Dec; 46(20):6652-60. PubMed ID: 22572123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of changing land use on the microbial water quality of tidal creeks.
    DiDonato GT; Stewart JR; Sanger DM; Robinson BJ; Thompson BC; Holland AF; Van Dolah RF
    Mar Pollut Bull; 2009 Jan; 58(1):97-106. PubMed ID: 18922549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the Relative Contributions of Environmental Sources to the Microbial Community in an Urban Stream under Dry and Wet Weather Conditions.
    Baral D; Speicher A; Dvorak B; Admiraal D; Li X
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29858206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.
    Qin HP; Khu ST; Yu XY
    Sci Total Environ; 2010 Sep; 408(20):4613-23. PubMed ID: 20667581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.