BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23021519)

  • 21. Calibration and validation of a dynamic water model in agricultural scenarios.
    Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A
    Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semi-field conditions.
    Laabs V; Wehrhan A; Pinto A; Dores E; Amelung W
    Chemosphere; 2007 Mar; 67(5):975-89. PubMed ID: 17166548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Runoff characteristics of particulate pesticides in a river from paddy fields.
    Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y
    Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fate of pesticides in combined paddy rice-fish pond farming systems in northern Vietnam.
    Anyusheva M; Lamers M; La N; Nguyen VV; Streck T
    J Environ Qual; 2012; 41(2):515-25. PubMed ID: 22370414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating degradation rates in outdoor stagnant water by inverse modelling with TOXSWA: a case study with prosulfocarb.
    Adriaanse PI; Boesten JJ; Crum SJ
    Pest Manag Sci; 2013 Jun; 69(6):755-67. PubMed ID: 23180504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Field leaching of pesticides at five test sites in Hawaii: modeling flow and transport.
    Dusek J; Dohnal M; Vogel T; Ray C
    Pest Manag Sci; 2011 Dec; 67(12):1571-82. PubMed ID: 21681917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct influence of filter strips on acute and chronic pesticide aquatic environmental exposure assessments across U.S. EPA scenarios.
    Sabbagh GJ; Muñoz-Carpena R; Fox GA
    Chemosphere; 2013 Jan; 90(2):195-202. PubMed ID: 22877937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pesticide decay in turf: a review of processes and experimental data.
    Magri A; Haith DA
    J Environ Qual; 2009; 38(1):4-12. PubMed ID: 19141790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cinosulfuron: chemical and biological degradability, adsorption and dissipation in flooded paddy field sediment.
    Nègre M; Baiocchi C; Gennari M
    Pest Manag Sci; 2005 Jul; 61(7):675-81. PubMed ID: 15726573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The slow recovery of San Francisco Bay from the legacy of organochlorine pesticides.
    Connor MS; Davis JA; Leatherbarrow J; Greenfield BK; Gunther A; Hardin D; Mumley T; Oram JJ; Werme C
    Environ Res; 2007 Sep; 105(1):87-100. PubMed ID: 16930588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental fate of rice pesticides in California.
    Mabury SA; Cox JS; Crosby DG
    Rev Environ Contam Toxicol; 1996; 147():71-117. PubMed ID: 8776986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model.
    Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E
    J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surfactant effects on environmental behavior of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2008; 194():71-177. PubMed ID: 18069647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems.
    Tsochatzis ED; Tzimou-Tsitouridou R; Menkissoglu-Spiroudi U; Karpouzas DG; Katsantonis D
    Chemosphere; 2013 May; 91(7):1049-57. PubMed ID: 23507498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.
    Garcia L; Bedos C; Génermont S; Braud I; Cellier P
    Sci Total Environ; 2011 Sep; 409(19):3980-92. PubMed ID: 21700320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissipation and residues of monosultap in rice plant and environment.
    Zhang F; Wang L; Zhou L; Pan C
    Bull Environ Contam Toxicol; 2012 Mar; 88(3):362-7. PubMed ID: 22033653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.