These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23021593)

  • 21. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
    Kimura M; Chan RW
    Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gradation of stiffness of the mucosa inferior to the vocal fold.
    Goodyer E; Gunderson M; Dailey SH
    J Voice; 2010 May; 24(3):359-62. PubMed ID: 19303741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatially varying properties of the vocal ligament contribute to its eigenfrequency response.
    Kelleher JE; Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):600-9. PubMed ID: 20826366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling.
    Weiß S; Thomson SL; Lerch R; Döllinger M; Sutor A
    J Mech Behav Biomed Mater; 2013 Jan; 17():137-51. PubMed ID: 23127628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.
    Miri AK; Barthelat F; Mongeau L
    J Voice; 2012 Nov; 26(6):688-97. PubMed ID: 22483778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering.
    Teller SS; Farran AJ; Xiao L; Jiao T; Duncan RL; Clifton RJ; Jia X
    Tissue Eng Part A; 2012 Oct; 18(19-20):2008-19. PubMed ID: 22741523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties.
    Xu CC; Chan RW; Sun H; Zhan X
    J Mech Behav Biomed Mater; 2017 Nov; 75():477-485. PubMed ID: 28823902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    J Acoust Soc Am; 2013 Mar; 133(3):1625-36. PubMed ID: 23464032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of vocal fold cover stiffness by laryngeal muscles: a preliminary study.
    Chhetri DK; Berke GS; Lotfizadeh A; Goodyer E
    Laryngoscope; 2009 Jan; 119(1):222-7. PubMed ID: 19117308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanics of human vocal folds layers during finite strains in tension, compression and shear.
    Cochereau T; Bailly L; Orgéas L; Henrich Bernardoni N; Robert Y; Terrien M
    J Biomech; 2020 Sep; 110():109956. PubMed ID: 32827774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition.
    Chan RW
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1548-61. PubMed ID: 11572365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling.
    Chui C; Kobayashi E; Chen X; Hisada T; Sakuma I
    Med Biol Eng Comput; 2007 Jan; 45(1):99-106. PubMed ID: 17160416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural constitutive modeling of the anisotropic mechanical properties of human vocal fold lamina propria.
    Zhang Z
    J Acoust Soc Am; 2019 Jun; 145(6):EL476. PubMed ID: 31255149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo measurement of the shear modulus of the human vocal fold: interim results from eight patients.
    Goodyer E; Müller F; Licht K; Hess M
    Eur Arch Otorhinolaryngol; 2007 Jun; 264(6):631-5. PubMed ID: 17285333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elasticity of the human false vocal fold.
    Chan RW; Fu M; Tirunagari N
    Ann Otol Rhinol Laryngol; 2006 May; 115(5):370-81. PubMed ID: 16739670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of hyaluronic acid in vocal fold biomechanics.
    Chan RW; Gray SD; Titze IR
    Otolaryngol Head Neck Surg; 2001 Jun; 124(6):607-14. PubMed ID: 11391249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.
    Heris HK; Miri AK; Tripathy U; Barthelat F; Mongeau L
    J Mech Behav Biomed Mater; 2013 Dec; 28():383-92. PubMed ID: 23829979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of extracellular matrix in vocal fold biomechanics using a two-phase model.
    Miri AK; Li NY; Avazmohammadi R; Thibeault SL; Mongrain R; Mongeau L
    Biomech Model Mechanobiol; 2015 Jan; 14(1):49-57. PubMed ID: 24792897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues.
    Chan RW; Titze IR
    Ann Biomed Eng; 2003 Apr; 31(4):482-91. PubMed ID: 12723689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.