These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23021613)

  • 21. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW
    Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.
    Jun D; Yongsheng Z; Weihong Z; Mei H
    J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Permeability of iron sulfide (FeS)-based materials for groundwater remediation.
    Henderson AD; Demond AH
    Water Res; 2013 Mar; 47(3):1267-76. PubMed ID: 23246668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater.
    Zhang X; Wu Y
    Water Sci Technol; 2017 Feb; 75(3-4):571-580. PubMed ID: 28192351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.
    Cong X; Xue N; Wang S; Li K; Li F
    Sci Total Environ; 2010 Jul; 408(16):3418-23. PubMed ID: 20471666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles.
    Su C; Puls RW; Krug TA; Watling MT; O'Hara SK; Quinn JW; Ruiz NE
    Water Res; 2012 Oct; 46(16):5071-84. PubMed ID: 22868086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Groundwater remediation: the next 30 years.
    Hadley PW; Newell CJ
    Ground Water; 2012; 50(5):669-78. PubMed ID: 22612359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--a column study.
    Li Z; Willms C; Alley J; Zhang P; Bowman RS
    Water Res; 2006 Dec; 40(20):3811-9. PubMed ID: 17055029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell.
    Jeong JY; Kim HK; Kim JH; Park JY
    Chemosphere; 2012 Sep; 89(2):172-8. PubMed ID: 22739545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter.
    Kozyatnyk I; Haglund P; Lövgren L; Tysklind M; Gustafsson A; Törneman N
    Water Sci Technol; 2014; 70(1):32-9. PubMed ID: 25026576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of common dissolved anions on the reduction of para-chloronitrobenzene by zero-valent iron in groundwater.
    Le C; Wu JH; Deng SB; Li P; Wang XD; Zhu NW; Wu PX
    Water Sci Technol; 2011; 63(7):1485-90. PubMed ID: 21508554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.