These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23022155)

  • 1. Effects of task constraints on obstacle avoidance strategies in patients with cerebellar disease.
    Kim YH; Song YG; Park IS; Rhyu IJ; Kim SB; Park JH
    Gait Posture; 2013 Apr; 37(4):521-5. PubMed ID: 23022155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration.
    Fonteyn EM; Heeren A; Engels JJ; Boer JJ; van de Warrenburg BP; Weerdesteyn V
    Gait Posture; 2014; 40(1):247-51. PubMed ID: 24786476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on perception of information from obstacles during foot clearance in people with chronic stroke.
    Shafizadeh M; Wheat J; Davids K; Ansari NN; Ali A; Garmabi S
    Exp Brain Res; 2017 Jun; 235(6):1665-1676. PubMed ID: 28271220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle crossing in people with Parkinson's disease: foot clearance and spatiotemporal deficits.
    Galna B; Murphy AT; Morris ME
    Hum Mov Sci; 2010 Oct; 29(5):843-52. PubMed ID: 19962206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration.
    Rabe K; Livne O; Gizewski ER; Aurich V; Beck A; Timmann D; Donchin O
    J Neurophysiol; 2009 Apr; 101(4):1961-71. PubMed ID: 19176608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity.
    Buckley JG; Panesar GK; MacLellan MJ; Pacey IE; Barrett BT
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2487-95. PubMed ID: 20335609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of an unexpected perturbation on adaptive gait behavior.
    Rhea CK; Rietdyk S
    Gait Posture; 2011 Jul; 34(3):439-41. PubMed ID: 21764314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.
    Kloter E; Dietz V
    Eur J Neurosci; 2012 May; 35(10):1613-21. PubMed ID: 22506969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome.
    Hocking DR; Rinehart NJ; McGinley JL; Galna B; Moss SA; Bradshaw JL
    Neuroscience; 2011 Dec; 197():320-9. PubMed ID: 21945032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepping over obstacles: attention demands and aging.
    Harley C; Wilkie RM; Wann JP
    Gait Posture; 2009 Apr; 29(3):428-32. PubMed ID: 19084412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of obstacle height on obstacle crossing in mild Parkinson's disease.
    Vitório R; Pieruccini-Faria F; Stella F; Gobbi S; Gobbi LT
    Gait Posture; 2010 Jan; 31(1):143-6. PubMed ID: 19854057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural instability and gait impairment during obstacle crossing in Parkinson's disease.
    Stegemöller EL; Buckley TA; Pitsikoulis C; Barthelemy E; Roemmich R; Hass CJ
    Arch Phys Med Rehabil; 2012 Apr; 93(4):703-9. PubMed ID: 22318131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible price of auditory cueing: influence on obstacle avoidance in Parkinson's disease.
    Nanhoe-Mahabier W; Delval A; Snijders AH; Weerdesteyn V; Overeem S; Bloem BR
    Mov Disord; 2012 Apr; 27(4):574-8. PubMed ID: 22344625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prism adaptation and generalization during visually guided locomotor tasks.
    Alexander MS; Flodin BW; Marigold DS
    J Neurophysiol; 2011 Aug; 106(2):860-71. PubMed ID: 21613590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in avoidance strategies when negotiating single and multiple obstacles.
    Lowrey CR; Watson A; Vallis LA
    Exp Brain Res; 2007 Sep; 182(3):289-99. PubMed ID: 17551718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of multi-obstacle contexts on obstacle negotiation strategies in healthy older adults under dual-task conditions.
    Yun JE; Park JH
    Gait Posture; 2022 May; 94():198-202. PubMed ID: 35364382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.
    Aoi S; Kondo T; Hayashi N; Yanagihara D; Aoki S; Yamaura H; Ogihara N; Funato T; Tomita N; Senda K; Tsuchiya K
    Biol Cybern; 2013 Apr; 107(2):201-16. PubMed ID: 23430278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.