These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23022244)

  • 1. Estimation of tibiofemoral static zero position during dynamic drop landing.
    Ida H; Nagano Y; Akai M; Ishii M; Fukubayashi T
    Knee; 2013 Oct; 20(5):339-45. PubMed ID: 23022244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landing biomechanics in participants with different static lower extremity alignment profiles.
    Nguyen AD; Shultz SJ; Schmitz RJ
    J Athl Train; 2015 May; 50(5):498-507. PubMed ID: 25658815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of static alignment of the knee, range of tibial rotation and tibial plateau geometry on the dynamic alignment of "knee-in" and tibial rotation during single limb drop landing.
    Arai T; Miaki H
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):642-8. PubMed ID: 23725792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial displacement and rotation during seated knee extension and wall squatting: a comparative study of tibiofemoral kinematics between chronic unilateral anterior cruciate ligament deficient and healthy knees.
    Keays SL; Sayers M; Mellifont DB; Richardson C
    Knee; 2013 Oct; 20(5):346-53. PubMed ID: 22854170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion.
    Wünschel M; Müller O; Lo J; Obloh C; Wülker N
    Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing.
    Deneweth JM; Bey MJ; McLean SG; Lock TR; Kolowich PA; Tashman S
    Am J Sports Med; 2010 Sep; 38(9):1820-8. PubMed ID: 20472756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton.
    Kimura Y; Ishibashi Y; Tsuda E; Yamamoto Y; Hayashi Y; Sato S
    Br J Sports Med; 2012 Mar; 46(3):207-13. PubMed ID: 21536708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can technique modification training reduce knee moments in a landing task?
    Dempsey AR; Elliott BC; Munro BJ; Steele JR; Lloyd DG
    J Appl Biomech; 2014 Apr; 30(2):231-6. PubMed ID: 24145826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball.
    Koga H; Nakamae A; Shima Y; Iwasa J; Myklebust G; Engebretsen L; Bahr R; Krosshaug T
    Am J Sports Med; 2010 Nov; 38(11):2218-25. PubMed ID: 20595545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°.
    Hirschmann A; Buck FM; Herschel R; Pfirrmann CWA; Fucentese SF
    Knee Surg Sports Traumatol Arthrosc; 2017 Mar; 25(3):853-862. PubMed ID: 26537597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of axial impact forces with knee joint forces and kinematics during simulated ski-landing.
    Yeow CH; Kong CY; Lee PV; Goh JC
    J Sports Sci; 2011 Aug; 29(11):1143-51. PubMed ID: 21774750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury.
    McLean SG; Huang X; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):863-70. PubMed ID: 16005555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.
    Dill KE; Begalle RL; Frank BS; Zinder SM; Padua DA
    J Athl Train; 2014; 49(6):723-32. PubMed ID: 25144599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction.
    Tsai LC; Powers CM
    Am J Sports Med; 2013 Feb; 41(2):423-9. PubMed ID: 23271006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury.
    Nagano Y; Ida H; Akai M; Fukubayashi T
    Knee; 2009 Mar; 16(2):153-8. PubMed ID: 19110433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.
    Kiriyama S; Sato H; Takahira N
    Am J Sports Med; 2009 Jan; 37(1):168-74. PubMed ID: 18936276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender differences in knee kinematics and muscle activity during single limb drop landing.
    Nagano Y; Ida H; Akai M; Fukubayashi T
    Knee; 2007 Jun; 14(3):218-23. PubMed ID: 17215126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.