These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 23022349)

  • 1. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy.
    Campbell MG; Cheng A; Brilot AF; Moeller A; Lyumkis D; Veesler D; Pan J; Harrison SC; Potter CS; Carragher B; Grigorieff N
    Structure; 2012 Nov; 20(11):1823-8. PubMed ID: 23022349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alignment of cryo-EM movies of individual particles by optimization of image translations.
    Rubinstein JL; Brubaker MA
    J Struct Biol; 2015 Nov; 192(2):188-95. PubMed ID: 26296328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6.
    Grant T; Grigorieff N
    Elife; 2015 May; 4():e06980. PubMed ID: 26023829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of Cryo-EM Movie Data.
    Ripstein ZA; Rubinstein JL
    Methods Enzymol; 2016; 579():103-24. PubMed ID: 27572725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beam-induced motion of vitrified specimen on holey carbon film.
    Brilot AF; Chen JZ; Cheng A; Pan J; Harrison SC; Potter CS; Carragher B; Henderson R; Grigorieff N
    J Struct Biol; 2012 Mar; 177(3):630-7. PubMed ID: 22366277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.
    Li X; Mooney P; Zheng S; Booth CR; Braunfeld MB; Gubbens S; Agard DA; Cheng Y
    Nat Methods; 2013 Jun; 10(6):584-90. PubMed ID: 23644547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.
    McMullan G; Vinothkumar KR; Henderson R
    Ultramicroscopy; 2015 Nov; 158():26-32. PubMed ID: 26103047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Description and comparison of algorithms for correcting anisotropic magnification in cryo-EM images.
    Zhao J; Brubaker MA; Benlekbir S; Rubinstein JL
    J Struct Biol; 2015 Nov; 192(2):209-15. PubMed ID: 26087140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle cryo-EM data acquisition by using direct electron detection camera.
    Wu S; Armache JP; Cheng Y
    Microscopy (Oxf); 2016 Feb; 65(1):35-41. PubMed ID: 26546989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy in-line electron holographic imaging of vitreous ice-embedded small biomolecules using a modified scanning electron microscope.
    Cheung M; Adaniya H; Cassidy C; Yamashita M; Shintake T
    Ultramicroscopy; 2020 Feb; 209():112883. PubMed ID: 31739191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing compressive deformation of proteins embedded in crystalline ice.
    Shi H; Wu C; Zhang X
    Structure; 2023 Feb; 31(2):213-220.e3. PubMed ID: 36586403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice thickness monitoring for cryo-EM grids by interferometry imaging.
    Hohle MM; Lammens K; Gut F; Wang B; Kahler S; Kugler K; Till M; Beckmann R; Hopfner KP; Jung C
    Sci Rep; 2022 Sep; 12(1):15330. PubMed ID: 36097274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution single particle cryo-electron microscopy using beam-image shift.
    Cheng A; Eng ET; Alink L; Rice WJ; Jordan KD; Kim LY; Potter CS; Carragher B
    J Struct Biol; 2018 Nov; 204(2):270-275. PubMed ID: 30055234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-protein detection in crowded molecular environments in cryo-EM images.
    Rickgauer JP; Grigorieff N; Denk W
    Elife; 2017 May; 6():. PubMed ID: 28467302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion.
    Harder OF; Voss JM; Olshin PK; Drabbels M; Lorenz UJ
    Acta Crystallogr D Struct Biol; 2022 Jul; 78(Pt 7):883-889. PubMed ID: 35775987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images.
    Karimi Nejadasl F; Karuppasamy M; Newman ER; McGeehan JE; Ravelli RB
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):58-66. PubMed ID: 23254656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM with sub-1 Å specimen movement.
    Naydenova K; Jia P; Russo CJ
    Science; 2020 Oct; 370(6513):223-226. PubMed ID: 33033219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-electron microscopy and the amazing race to atomic resolution.
    Binshtein E; Ohi MD
    Biochemistry; 2015 May; 54(20):3133-41. PubMed ID: 25955078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam-induced motion correction for sub-megadalton cryo-EM particles.
    Scheres SH
    Elife; 2014 Aug; 3():e03665. PubMed ID: 25122622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MeasureIce: accessible on-the-fly measurement of ice thickness in cryo-electron microscopy.
    Brown HG; Hanssen E
    Commun Biol; 2022 Aug; 5(1):817. PubMed ID: 35965271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.