BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23022415)

  • 1. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity.
    Wei XX; Zhang ZY; Fan QL; Yuan XY; Guo DS
    J Hazard Mater; 2012 Nov; 239-240():135-41. PubMed ID: 23022415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.
    Dehua M; Cong L; Xiaobiao Z; Rui L; Lujun C
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18343-52. PubMed ID: 27278071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant.
    Zhao JL; Jiang YX; Yan B; Wei C; Zhang LJ; Ying GG
    Environ Toxicol Chem; 2014 Sep; 33(9):1967-75. PubMed ID: 25042296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.
    Ma X; Wang X; Liu Y; Gao J; Wang Y
    Ecotoxicol Environ Saf; 2017 Apr; 138():163-169. PubMed ID: 28049073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).
    Zayneb C; Lamia K; Olfa E; Naïma J; Grubb CD; Bassem K; Hafedh M; Amine E
    Bull Environ Contam Toxicol; 2015 Nov; 95(5):687-93. PubMed ID: 26341252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process.
    Liu Y; Liu J; Zhang A; Liu Z
    Environ Pollut; 2017 Jan; 220(Pt A):13-19. PubMed ID: 27707598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological risks associated with tannery effluent wastewater.
    Shakir L; Ejaz S; Ashraf M; Qureshi NA; Anjum AA; Iltaf I; Javeed A
    Environ Toxicol Pharmacol; 2012 Sep; 34(2):180-191. PubMed ID: 22522427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Coking Wastewater on the Growth of Five Wetland Plant Species.
    Xiang Y; Xiang Y; Wang L; Jiao Y
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):265-270. PubMed ID: 29147739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant.
    Zhang Y; Wei C; Yan B
    Sci Total Environ; 2019 Nov; 693():133417. PubMed ID: 31374506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the bio-toxicity of coking wastewater using Zea mays L. assay.
    Han M; Li G; Sang N; Dong Y
    Ecotoxicol Environ Saf; 2011 May; 74(4):1050-6. PubMed ID: 21353705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.
    Chu L; Wang J; Dong J; Liu H; Sun X
    Chemosphere; 2012 Jan; 86(4):409-14. PubMed ID: 22014660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers.
    Sun G; Wan J; Sun Y; Li H; Chang C; Wang Y
    Chemosphere; 2019 Dec; 237():124520. PubMed ID: 31404739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.
    Zhang C; Lin H; Chen J; Zhang W
    Environ Technol; 2013; 34(13-16):2371-6. PubMed ID: 24350493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of organic compounds' degradation and electricity generation in anaerobic fluidized bed microbial fuel cell for coking wastewater treatment.
    Liu X; Wu J; Guo Q
    Environ Technol; 2017 Dec; 38(24):3115-3121. PubMed ID: 28278780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced treatment of coking wastewater: Recent advances and prospects.
    Wang J; Wang S; Hu C
    Chemosphere; 2024 Feb; 349():140923. PubMed ID: 38092162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode.
    Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z
    Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollution level in distillery effluent and its phytotoxic effect on seed germination and early growth of maize and rice.
    Pandey SN; Nautiyal BD; Sharma CP
    J Environ Biol; 2008 Mar; 29(2):267-70. PubMed ID: 18831388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Coking Wastewater Treatment Efficiency and Comparison of Acute Toxicity Characteristics of the AnMBR-A-MBR and A
    Zhu JD; Li FF; Chen LJ
    Huan Jing Ke Xue; 2017 Oct; 38(10):4293-4301. PubMed ID: 29965214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan).
    Salian R; Wani S; Reddy R; Patil M
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):9145-9154. PubMed ID: 29340862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).
    Rusan MJ; Albalasmeh AA; Zuraiqi S; Bashabsheh M
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9127-35. PubMed ID: 25874415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.