These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23022618)

  • 1. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae.
    Kaplan CD
    Biochim Biophys Acta; 2013 Jan; 1829(1):39-54. PubMed ID: 23022618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo.
    Kaplan CD; Jin H; Zhang IL; Belyanin A
    PLoS Genet; 2012; 8(4):e1002627. PubMed ID: 22511879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation.
    Kireeva ML; Domecq C; Coulombe B; Burton ZF; Kashlev M
    J Biol Chem; 2011 Sep; 286(35):30898-30910. PubMed ID: 21730074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic mechanism of transcription by RNA polymerase II.
    Svetlov V; Nudler E
    Biochim Biophys Acta; 2013 Jan; 1829(1):20-8. PubMed ID: 22982365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
    Kireeva ML; Nedialkov YA; Cremona GH; Purtov YA; Lubkowska L; Malagon F; Burton ZF; Strathern JN; Kashlev M
    Mol Cell; 2008 Jun; 30(5):557-66. PubMed ID: 18538654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of transcribing mammalian RNA polymerase II.
    Bernecky C; Herzog F; Baumeister W; Plitzko JM; Cramer P
    Nature; 2016 Jan; 529(7587):551-4. PubMed ID: 26789250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo.
    Malik I; Qiu C; Snavely T; Kaplan CD
    Nucleic Acids Res; 2017 May; 45(8):4431-4451. PubMed ID: 28119420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of RNA polymerase II backtracking, arrest and reactivation.
    Cheung AC; Cramer P
    Nature; 2011 Mar; 471(7337):249-53. PubMed ID: 21346759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II.
    Bhalla P; Vernekar DV; Gilquin B; Couté Y; Bhargava P
    Gene; 2019 Jun; 702():205-214. PubMed ID: 30593915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of two modes of intrinsic RNA polymerase transcript cleavage.
    Ruan W; Lehmann E; Thomm M; Kostrewa D; Cramer P
    J Biol Chem; 2011 May; 286(21):18701-7. PubMed ID: 21454497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation.
    Gao L; Gross DS
    Mol Cell Biol; 2008 Jun; 28(12):3979-94. PubMed ID: 18391020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription.
    Ghavi-Helm Y; Michaut M; Acker J; Aude JC; Thuriaux P; Werner M; Soutourina J
    Genes Dev; 2008 Jul; 22(14):1934-47. PubMed ID: 18628399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II.
    Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J
    Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle.
    Ma Z; Atencio D; Barnes C; DeFiglio H; Hanes SD
    Mol Cell Biol; 2012 Sep; 32(17):3594-607. PubMed ID: 22778132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex.
    Sainsbury S; Niesser J; Cramer P
    Nature; 2013 Jan; 493(7432):437-40. PubMed ID: 23151482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae.
    Kremer SB; Kim S; Jeon JO; Moustafa YW; Chen A; Zhao J; Gross DS
    Genetics; 2012 May; 191(1):95-106. PubMed ID: 22377631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae.
    Kubicek CE; Chisholm RD; Takayama S; Hawley DK
    G3 (Bethesda); 2013 Feb; 3(2):167-80. PubMed ID: 23390594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels.
    Zhu Y; Vvedenskaya IO; Sze SH; Nickels BE; Kaplan CD
    Nat Struct Mol Biol; 2024 Jan; 31(1):190-202. PubMed ID: 38177677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.
    Kaplan CD; Holland MJ; Winston F
    J Biol Chem; 2005 Jan; 280(2):913-22. PubMed ID: 15531585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II.
    Morillon A; Karabetsou N; O'Sullivan J; Kent N; Proudfoot N; Mellor J
    Cell; 2003 Nov; 115(4):425-35. PubMed ID: 14622597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.