These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23022618)

  • 21. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
    Kettenberger H; Eisenführ A; Brueckner F; Theis M; Famulok M; Cramer P
    Nat Struct Mol Biol; 2006 Jan; 13(1):44-8. PubMed ID: 16341226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae.
    Wu X; Rossettini A; Hanes SD
    Genetics; 2003 Dec; 165(4):1687-702. PubMed ID: 14704159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae.
    Cui P; Jin H; Vutukuru MR; Kaplan CD
    G3 (Bethesda); 2016 Aug; 6(8):2489-504. PubMed ID: 27261007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening.
    Kassavetis GA; Prakash P; Shim E
    J Biol Chem; 2010 Jan; 285(4):2695-706. PubMed ID: 19940126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N; Saldi T; Sheridan RM; Cortazar MA; Bentley DL
    Mol Cell; 2017 May; 66(4):546-557.e3. PubMed ID: 28506463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcript elongation on a nucleoprotein template.
    Hartzog GA; Speer JL; Lindstrom DL
    Biochim Biophys Acta; 2002 Sep; 1577(2):276-86. PubMed ID: 12213658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subgenic Pol II interactomes identify region-specific transcription elongation regulators.
    Harlen KM; Churchman LS
    Mol Syst Biol; 2017 Jan; 13(1):900. PubMed ID: 28043953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.
    Wang D; Bushnell DA; Westover KD; Kaplan CD; Kornberg RD
    Cell; 2006 Dec; 127(5):941-54. PubMed ID: 17129781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast.
    Mischo HE; Proudfoot NJ
    Biochim Biophys Acta; 2013 Jan; 1829(1):174-85. PubMed ID: 23085255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications.
    Jacobs RQ; Schneider DA
    J Biol Chem; 2024 Mar; 300(3):105737. PubMed ID: 38336292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes.
    Pearson E; Moore C
    Cell Rep; 2014 Nov; 9(3):821-8. PubMed ID: 25437538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms of RNA polymerase II transcription elongation elucidated by kinetic network models.
    Unarta IC; Zhu L; Tse CKM; Cheung PP; Yu J; Huang X
    Curr Opin Struct Biol; 2018 Apr; 49():54-62. PubMed ID: 29414512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo.
    Mason PB; Struhl K
    Mol Cell; 2005 Mar; 17(6):831-40. PubMed ID: 15780939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis of RNA-dependent RNA polymerase II activity.
    Lehmann E; Brueckner F; Cramer P
    Nature; 2007 Nov; 450(7168):445-9. PubMed ID: 18004386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for chromatin remodeling in transcriptional termination by RNA polymerase II.
    Alén C; Kent NA; Jones HS; O'Sullivan J; Aranda A; Proudfoot NJ
    Mol Cell; 2002 Dec; 10(6):1441-52. PubMed ID: 12504018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates.
    Turowski TW; Petfalski E; Goddard BD; French SL; Helwak A; Tollervey D
    Mol Cell; 2020 Aug; 79(3):488-503.e11. PubMed ID: 32585128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of initial RNA polymerase II transcription.
    Cheung AC; Sainsbury S; Cramer P
    EMBO J; 2011 Nov; 30(23):4755-63. PubMed ID: 22056778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ISWI complexes in Saccharomyces cerevisiae.
    Mellor J; Morillon A
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):100-12. PubMed ID: 15020051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. External conditions inversely change the RNA polymerase II elongation rate and density in yeast.
    Miguel A; Montón F; Li T; Gómez-Herreros F; Chávez S; Alepuz P; Pérez-Ortín JE
    Biochim Biophys Acta; 2013 Nov; 1829(11):1248-55. PubMed ID: 24103494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.