These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 23022618)
61. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Nordick K; Hoffman MG; Betz JL; Jaehning JA Eukaryot Cell; 2008 Jul; 7(7):1158-67. PubMed ID: 18469135 [TBL] [Abstract][Full Text] [Related]
62. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries. Krishnamurthy S; Ghazy MA; Moore C; Hampsey M Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564 [TBL] [Abstract][Full Text] [Related]
63. Evidence for a mediator cycle at the initiation of transcription. Svejstrup JQ; Li Y; Fellows J; Gnatt A; Bjorklund S; Kornberg RD Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6075-8. PubMed ID: 9177171 [TBL] [Abstract][Full Text] [Related]
64. Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Jordán-Pla A; Gupta I; de Miguel-Jiménez L; Steinmetz LM; Chávez S; Pelechano V; Pérez-Ortín JE Nucleic Acids Res; 2015 Jan; 43(2):787-802. PubMed ID: 25550430 [TBL] [Abstract][Full Text] [Related]
65. Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome. Hong SW; Hong SM; Yoo JW; Lee YC; Kim S; Lis JT; Lee DK Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14276-80. PubMed ID: 19666497 [TBL] [Abstract][Full Text] [Related]
66. The RNA polymerase II general elongation complex. Shilatifard A Biol Chem; 1998 Jan; 379(1):27-31. PubMed ID: 9504713 [TBL] [Abstract][Full Text] [Related]
67. p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo. Kim S; Balakrishnan SK; Gross DS PLoS One; 2011; 6(8):e22183. PubMed ID: 21829606 [TBL] [Abstract][Full Text] [Related]
68. Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae. Jin H; Kaplan CD G3 (Bethesda); 2014 Nov; 5(1):21-33. PubMed ID: 25380729 [TBL] [Abstract][Full Text] [Related]
69. Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Barnes CO; Calero M; Malik I; Graham BW; Spahr H; Lin G; Cohen AE; Brown IS; Zhang Q; Pullara F; Trakselis MA; Kaplan CD; Calero G Mol Cell; 2015 Jul; 59(2):258-69. PubMed ID: 26186291 [TBL] [Abstract][Full Text] [Related]
70. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Zhang Y; Sikes ML; Beyer AL; Schneider DA Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2153-8. PubMed ID: 19164765 [TBL] [Abstract][Full Text] [Related]
71. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. Han Z; Jasnovidova O; Haidara N; Tudek A; Kubicek K; Libri D; Stefl R; Porrua O EMBO J; 2020 Apr; 39(7):e101548. PubMed ID: 32107786 [TBL] [Abstract][Full Text] [Related]
72. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. Eichner J; Chen HT; Warfield L; Hahn S EMBO J; 2010 Feb; 29(4):706-16. PubMed ID: 20033062 [TBL] [Abstract][Full Text] [Related]
73. RNA polymerase II structure: from core to functional complexes. Cramer P Curr Opin Genet Dev; 2004 Apr; 14(2):218-26. PubMed ID: 15196470 [TBL] [Abstract][Full Text] [Related]
74. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Čabart P; Jin H; Li L; Kaplan CD Transcription; 2014; 5(3):e28869. PubMed ID: 25764335 [TBL] [Abstract][Full Text] [Related]
75. Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Khaperskyy DA; Ammerman ML; Majovski RC; Ponticelli AS Mol Cell Biol; 2008 Jun; 28(11):3757-66. PubMed ID: 18362165 [TBL] [Abstract][Full Text] [Related]
76. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. Kellinger MW; Ulrich S; Chong J; Kool ET; Wang D J Am Chem Soc; 2012 May; 134(19):8231-40. PubMed ID: 22509745 [TBL] [Abstract][Full Text] [Related]
77. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II. Fishburn J; Galburt E; Hahn S J Biol Chem; 2016 Jun; 291(25):13040-7. PubMed ID: 27129284 [TBL] [Abstract][Full Text] [Related]
78. A comprehensive mechanism for 5-carboxylcytosine-induced transcriptional pausing revealed by Markov state models. Konovalov KA; Wang W; Wang G; Goonetilleke EC; Gao X; Wang D; Huang X J Biol Chem; 2021; 296():100735. PubMed ID: 33991521 [TBL] [Abstract][Full Text] [Related]
79. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508 [TBL] [Abstract][Full Text] [Related]
80. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Ocampo J; Chereji RV; Eriksson PR; Clark DJ Genome Res; 2019 Mar; 29(3):407-417. PubMed ID: 30683752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]