These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23022618)

  • 81. Single-molecule studies of RNAPII elongation.
    Zhou J; Schweikhard V; Block SM
    Biochim Biophys Acta; 2013 Jan; 1829(1):29-38. PubMed ID: 22982192
    [TBL] [Abstract][Full Text] [Related]  

  • 82. RNA polymerase II transcription: structure and mechanism.
    Liu X; Bushnell DA; Kornberg RD
    Biochim Biophys Acta; 2013 Jan; 1829(1):2-8. PubMed ID: 23000482
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Transient-State Kinetic Analysis of the RNA Polymerase II Nucleotide Incorporation Mechanism.
    Carter ZI; Jacobs RQ; Schneider DA; Lucius AL
    Biochemistry; 2023 Jan; 62(1):95-108. PubMed ID: 36525636
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transcriptional repression across mitosis: mechanisms and functions.
    Contreras A; Perea-Resa C
    Biochem Soc Trans; 2024 Feb; 52(1):455-464. PubMed ID: 38372373
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Nucleotide addition and cleavage by RNA polymerase II: Coordination of two catalytic reactions using a single active site.
    Unarta IC; Goonetilleke EC; Wang D; Huang X
    J Biol Chem; 2023 Feb; 299(2):102844. PubMed ID: 36581202
    [TBL] [Abstract][Full Text] [Related]  

  • 86. RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications.
    Shin JH; Xu L; Wang D
    Transcription; 2016 May; 7(3):57-62. PubMed ID: 27105138
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Impact of template backbone heterogeneity on RNA polymerase II transcription.
    Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D
    Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.
    Larson MH; Zhou J; Kaplan CD; Palangat M; Kornberg RD; Landick R; Block SM
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6555-60. PubMed ID: 22493230
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects.
    Palo MZ; Zhu J; Mishanina TV; Landick R
    Biochemistry; 2021 Nov; 60(44):3323-3336. PubMed ID: 34705427
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Complexity of RNA polymerase II elongation dynamics.
    Palangat M; Larson DR
    Biochim Biophys Acta; 2012 Jul; 1819(7):667-72. PubMed ID: 22480952
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Quantifying the impact of initial RNA primer length on nucleotide addition by RNA polymerase I.
    Cooper SL; Lucius AL; Schneider DA
    Biophys Chem; 2024 Feb; 305():107151. PubMed ID: 38088007
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Functional interplay between NTP leaving group and base pair recognition during RNA polymerase II nucleotide incorporation revealed by methylene substitution.
    Hwang CS; Xu L; Wang W; Ulrich S; Zhang L; Chong J; Shin JH; Huang X; Kool ET; McKenna CE; Wang D
    Nucleic Acids Res; 2016 May; 44(8):3820-8. PubMed ID: 27060150
    [TBL] [Abstract][Full Text] [Related]  

  • 93. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease.
    Kuldell JC; Kaplan CD
    J Mol Biol; 2025 Jan; 437(1):168770. PubMed ID: 39214283
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism.
    Dangkulwanich M; Ishibashi T; Liu S; Kireeva ML; Lubkowska L; Kashlev M; Bustamante CJ
    Elife; 2013 Sep; 2():e00971. PubMed ID: 24066225
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Millisecond dynamics of RNA polymerase II translocation at atomic resolution.
    Silva DA; Weiss DR; Pardo Avila F; Da LT; Levitt M; Wang D; Huang X
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7665-70. PubMed ID: 24753580
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning.
    Dutagaci B; Duan B; Qiu C; Kaplan CD; Feig M
    PLoS Comput Biol; 2023 Mar; 19(3):e1010999. PubMed ID: 36947548
    [TBL] [Abstract][Full Text] [Related]  

  • 97. RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II.
    Wang IX; Core LJ; Kwak H; Brady L; Bruzel A; McDaniel L; Richards AL; Wu M; Grunseich C; Lis JT; Cheung VG
    Cell Rep; 2014 Mar; 6(5):906-15. PubMed ID: 24561252
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Transcript assisted phosphodiester bond hydrolysis by eukaryotic RNA polymerase II.
    Nielsen S; Zenkin N
    Transcription; 2013; 4(5):209-12. PubMed ID: 24270513
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II.
    Wang B; Predeus AV; Burton ZF; Feig M
    Biophys J; 2013 Aug; 105(3):767-75. PubMed ID: 23931324
    [TBL] [Abstract][Full Text] [Related]  

  • 100. On cycles in the transcription network of Saccharomyces cerevisiae.
    Jeong J; Berman P
    BMC Syst Biol; 2008 Jan; 2():12. PubMed ID: 18237406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.