BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23022947)

  • 1. Fluorescence quenching of fulvic acids by fullerene in water.
    Wu F; Bai Y; Mu Y; Pan B; Xing B; Lin Y
    Environ Pollut; 2013 Jan; 172():100-7. PubMed ID: 23022947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study.
    Bai Y; Wu F; Liu C; Guo J; Fu P; Li W; Xing B
    Environ Toxicol Chem; 2008 Jan; 27(1):95-102. PubMed ID: 18092851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium.
    Elkins KM; Dickerson MA; Traudt EM
    J Inorg Biochem; 2011 Nov; 105(11):1469-76. PubMed ID: 21983257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence and FT-IR spectroscopic studies of Suwannee River fulvic acid complexation with aluminum, terbium and calcium.
    Elkins KM; Nelson DJ
    J Inorg Biochem; 2001 Nov; 87(1-2):81-96. PubMed ID: 11709217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles.
    Manciulea A; Baker A; Lead JR
    Chemosphere; 2009 Aug; 76(8):1023-7. PubMed ID: 19477482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Hg2+ binding potential of fulvic acids from fluorescence excitation-emission matrices.
    Berkovic AM; García Einschlag FS; Gonzalez MC; Pis Diez R; Mártire DO
    Photochem Photobiol Sci; 2013 Feb; 12(2):384-92. PubMed ID: 23076546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents.
    Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD
    Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic changes on fulvic acids from a kraft pulp mill effluent caused by sun irradiation.
    Carvalho SI; Otero M; Duarte AC; Santos EB
    Chemosphere; 2008 Dec; 73(11):1845-52. PubMed ID: 18804839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of fullerene nanomaterials between water and model biological membranes.
    Hou WC; Moghadam BY; Westerhoff P; Posner JD
    Langmuir; 2011 Oct; 27(19):11899-905. PubMed ID: 21854052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection.
    Celiz MD; Colón LA; Watson DF; Aga DS
    Environ Sci Technol; 2011 Apr; 45(7):2917-24. PubMed ID: 21381674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-wavelength fluorescence-quenching model for determination of Cu2+ conditional stability constants and ligand concentrations of fulvic acid.
    Hays MD; Ryan DK; Pennell S
    Appl Spectrosc; 2003 Apr; 57(4):454-60. PubMed ID: 14658643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could triplet-sensitised transformation of phenolic compounds represent a source of fulvic-like substances in natural waters?
    De Laurentiis E; Maurino V; Minero C; Vione D; Mailhot G; Brigante M
    Chemosphere; 2013 Jan; 90(2):881-4. PubMed ID: 23036323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(II) and Hg(II).
    Bai YC; Wu FC; Liu CQ; Li W; Guo JY; Fu PQ; Xing BS; Zheng J
    Anal Chim Acta; 2008 May; 616(1):115-21. PubMed ID: 18471492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.
    Zhu B; Ryan DK
    J Environ Radioact; 2016 Mar; 153():97-103. PubMed ID: 26736183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water.
    Lu R; Sheng GP; Liang Y; Li WH; Tong ZH; Chen W; Yu HQ
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2220-5. PubMed ID: 22802117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical property of iron binding to Suwannee River fulvic acid.
    Yan M; Li M; Wang D; Xiao F
    Chemosphere; 2013 May; 91(7):1042-8. PubMed ID: 23499223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.
    Gadad P; Lei H; Nanny MA
    Water Res; 2007 Nov; 41(19):4488-96. PubMed ID: 17632208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cations on noncovalent interactions between 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and dissolved fulvic and humic acids.
    Gadad P; Nanny MA
    Water Res; 2008 Dec; 42(19):4818-26. PubMed ID: 18849058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterising the interactions between Cu(II) and fulvic acid subcomponents using differential fluorescence spectroscopy combined with parallel factor analysis.
    Huang N; Zhang J; Zhao C; Li S; Lu Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88925-88937. PubMed ID: 35842512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.