These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 23022949)
21. Methylmercury in biota downstream of Arivaca lake, Arizona, USA. Marr CL; Robertson K; Reynolds KD Arch Environ Contam Toxicol; 2014 Apr; 66(3):327-40. PubMed ID: 24468966 [TBL] [Abstract][Full Text] [Related]
22. Methanogens: principal methylators of mercury in lake periphyton. Hamelin S; Amyot M; Barkay T; Wang Y; Planas D Environ Sci Technol; 2011 Sep; 45(18):7693-700. PubMed ID: 21875053 [TBL] [Abstract][Full Text] [Related]
23. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Hamelin S; Planas D; Amyot M Sci Total Environ; 2015 Apr; 512-513():464-471. PubMed ID: 25644842 [TBL] [Abstract][Full Text] [Related]
24. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Yu RQ; Flanders JR; Mack EE; Turner R; Mirza MB; Barkay T Environ Sci Technol; 2012 Mar; 46(5):2684-91. PubMed ID: 22148328 [TBL] [Abstract][Full Text] [Related]
25. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Marvin-DiPasquale M; Windham-Myers L; Agee JL; Kakouros E; Kieu le H; Fleck JA; Alpers CN; Stricker CA Sci Total Environ; 2014 Jun; 484():288-99. PubMed ID: 24188689 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): implications for environmental and human health risk assessment. Figueiredo NL; Canário J; Duarte A; Serralheiro ML; Carvalho C J Toxicol Environ Health A; 2014; 77(1-3):155-68. PubMed ID: 24555656 [TBL] [Abstract][Full Text] [Related]
27. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Matthews DA; Babcock DB; Nolan JG; Prestigiacomo AR; Effler SW; Driscoll CT; Todorova SG; Kuhr KM Environ Res; 2013 Aug; 125():52-60. PubMed ID: 23683521 [TBL] [Abstract][Full Text] [Related]
28. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano. Alanoca L; Amouroux D; Monperrus M; Tessier E; Goni M; Guyoneaud R; Acha D; Gassie C; Audry S; Garcia ME; Quintanilla J; Point D Environ Sci Pollut Res Int; 2016 Apr; 23(7):6919-33. PubMed ID: 26676541 [TBL] [Abstract][Full Text] [Related]
29. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Québec. Surette C; Lucotte M; Tremblay A Sci Total Environ; 2006 Sep; 368(1):248-61. PubMed ID: 16219338 [TBL] [Abstract][Full Text] [Related]
30. Mercury methylation and demethylation in highly contaminated sediments from the Deûle River in Northern France using species-specific enriched stable isotopes. Ouddane B; Monperrus M; Kadlecova M; Daye M; Amouroux D Environ Sci Process Impacts; 2015 Jan; 17(1):145-55. PubMed ID: 25421488 [TBL] [Abstract][Full Text] [Related]
31. Benthic methylmercury production in lacustrine ecosystems of Nahuel Huapi National Park, Patagonia, Argentina. Ribeiro Guevara S; Catán SP; Marvin-DiPasquale M Chemosphere; 2009 Oct; 77(4):471-7. PubMed ID: 19698971 [TBL] [Abstract][Full Text] [Related]
32. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania. Ikingura JR; Akagi H; Mujumba J; Messo C J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263 [TBL] [Abstract][Full Text] [Related]
33. Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem. Zižek S; Milačič R; Kovač N; Jaćimović R; Toman MJ; Horvat M Chemosphere; 2011 Oct; 85(5):883-91. PubMed ID: 21840563 [TBL] [Abstract][Full Text] [Related]
34. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404 [TBL] [Abstract][Full Text] [Related]
35. Total mercury and methylmercury accumulation in periphyton of Boreal Shield lakes: influence of watershed physiographic characteristics. Desrosiers M; Planas D; Mucci A Sci Total Environ; 2006 Feb; 355(1-3):247-58. PubMed ID: 15894350 [TBL] [Abstract][Full Text] [Related]
36. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406 [TBL] [Abstract][Full Text] [Related]
37. Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production. Windham-Myers L; Marvin-DiPasquale M; A Stricker C; Agee JL; H Kieu L; Kakouros E Sci Total Environ; 2014 Jun; 484():300-7. PubMed ID: 23809881 [TBL] [Abstract][Full Text] [Related]
38. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Perrot V; Pastukhov MV; Epov VN; Husted S; Donard OF; Amouroux D Environ Sci Technol; 2012 Jun; 46(11):5902-11. PubMed ID: 22545798 [TBL] [Abstract][Full Text] [Related]
39. Environmental factors influencing mercury speciation in Subarctic and Boreal lakes. Braaten HF; de Wit HA; Fjeld E; Rognerud S; Lydersen E; Larssen T Sci Total Environ; 2014 Apr; 476-477():336-45. PubMed ID: 24476974 [TBL] [Abstract][Full Text] [Related]
40. Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments. Kim M; Han S; Gieskes J; Deheyn DD Sci Total Environ; 2011 Jan; 409(4):778-84. PubMed ID: 21109287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]