These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23023134)

  • 21. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes.
    Wetzler N; Lay T; Brodsky EE; Kanamori H
    Sci Adv; 2018 Feb; 4(2):eaao3225. PubMed ID: 29487902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultralow frictional healing explains recurring slow slip events.
    Shreedharan S; Saffer D; Wallace LM; Williams C
    Science; 2023 Feb; 379(6633):712-717. PubMed ID: 36795827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal modulation of deep slow-slip and earthquakes on the Main Himalayan Thrust.
    Panda D; Kundu B; Gahalaut VK; Bürgmann R; Jha B; Asaithambi R; Yadav RK; Vissa NK; Bansal AK
    Nat Commun; 2018 Oct; 9(1):4140. PubMed ID: 30297711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench.
    Arai R; Takahashi T; Kodaira S; Kaiho Y; Nakanishi A; Fujie G; Nakamura Y; Yamamoto Y; Ishihara Y; Miura S; Kaneda Y
    Nat Commun; 2016 Jul; 7():12255. PubMed ID: 27447546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lithospheric folding by flexural slip in subduction zones as source for reverse fault intraslab earthquakes.
    Romeo I; Álvarez-Gómez JA
    Sci Rep; 2018 Jan; 8(1):1367. PubMed ID: 29358760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Weakening Mechanisms in a Basalt-Hosted Subduction Megathrust Fault Segment, Southern Alaska.
    Braden Z; Behr WM
    J Geophys Res Solid Earth; 2021 Sep; 126(9):e2021JB022039. PubMed ID: 35865263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional variations of the slab geometry correlate with earthquake distributions at the Cascadia subduction system.
    Gao H
    Nat Commun; 2018 Mar; 9(1):1204. PubMed ID: 29572519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex.
    Dielforder A; Vollstaedt H; Vennemann T; Berger A; Herwegh M
    Nat Commun; 2015 Jun; 6():7504. PubMed ID: 26105966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seismological evidence for a multifault network at the subduction interface.
    Chalumeau C; Agurto-Detzel H; Rietbrock A; Frietsch M; Oncken O; Segovia M; Galve A
    Nature; 2024 Apr; 628(8008):558-562. PubMed ID: 38632482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake.
    Agata R; Barbot SD; Fujita K; Hyodo M; Iinuma T; Nakata R; Ichimura T; Hori T
    Nat Commun; 2019 Mar; 10(1):1385. PubMed ID: 30914636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.
    Beavan J; Wang X; Holden C; Wilson K; Power W; Prasetya G; Bevis M; Kautoke R
    Nature; 2010 Aug; 466(7309):959-63. PubMed ID: 20725037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone.
    Fasola SL; Brudzinski MR; Holtkamp SG; Graham SE; Cabral-Cano E
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7198-7206. PubMed ID: 30910959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands.
    Ammon CJ; Kanamori H; Lay T
    Nature; 2008 Jan; 451(7178):561-5. PubMed ID: 18235499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in the thermal and dehydration regime below Central America: Insights for the seismogenic plate interface.
    Qu R; Ji Y; Liu L; Zhu W; Zhu Y; Xie C; Yoshioka S; Faheem H; Ding L
    iScience; 2023 Oct; 26(10):107936. PubMed ID: 37817941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress orientations in subduction zones and the strength of subduction megathrust faults.
    Hardebeck JL
    Science; 2015 Sep; 349(6253):1213-6. PubMed ID: 26359399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global variations of large megathrust earthquake rupture characteristics.
    Ye L; Kanamori H; Lay T
    Sci Adv; 2018 Mar; 4(3):eaao4915. PubMed ID: 29750186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relation between short- and long-term deformation in actively deforming plate boundary zones.
    Lamb S
    Philos Trans A Math Phys Eng Sci; 2021 Mar; 379(2193):20190414. PubMed ID: 33517875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous slab thermal dehydration driving warm subduction zone earthquakes.
    Zhu Y; Ji Y; Liu L; Zhu W; Qu R; Xie C; Faheem H; Yoshioka S; Ding L
    Sci Rep; 2023 Nov; 13(1):21157. PubMed ID: 38036715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories.
    Nishikawa T; Matsuzawa T; Ohta K; Uchida N; Nishimura T; Ide S
    Science; 2019 Aug; 365(6455):808-813. PubMed ID: 31439795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes.
    Sallarès V; Ranero CR
    Nature; 2019 Dec; 576(7785):96-101. PubMed ID: 31776513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.