These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23023264)

  • 21. Unraveling the Mechanism of Water-Mediated Sulfur Tolerance via Operando Surface-Enhanced Raman Spectroscopy.
    Kim JH; Chern ZY; Yoo S; deGlee B; Wang J; Liu M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2370-2379. PubMed ID: 31845795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new anode for solid oxide fuel cells with enhanced OCV under methane operation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Núñez P; Zhou W; Irvine JT
    Phys Chem Chem Phys; 2007 Apr; 9(15):1821-30. PubMed ID: 17415494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.
    Panthi D; Tsutsumi A
    Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.
    van Duin AC; Merinov BV; Jang SS; Goddard WA
    J Phys Chem A; 2008 Apr; 112(14):3133-40. PubMed ID: 18348544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalysis in solid oxide fuel cells.
    Gorte RJ; Vohs JM
    Annu Rev Chem Biomol Eng; 2011; 2():9-30. PubMed ID: 22432608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing Complexity Approach to the Fundamental Surface and Interface Chemistry on SOFC Anode Materials.
    Penner S; Götsch T; Klötzer B
    Acc Chem Res; 2020 Sep; 53(9):1811-1821. PubMed ID: 32786330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.
    Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance.
    Song Y; Wang W; Ge L; Xu X; Zhang Z; Julião PSB; Zhou W; Shao Z
    Adv Sci (Weinh); 2017 Nov; 4(11):1700337. PubMed ID: 29201629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Active Sites on Nickel in the Anode of Intermediate-Temperature Solid Oxide Fuel Cells using Trace Amount of Platinum Oxides.
    Rednyk A; Mori T; Yamamoto S; Suzuki A; Yamamoto Y; Tanji T; Isaka N; Kúš P; Ito S; Ye F
    Chempluschem; 2018 Aug; 83(8):756-768. PubMed ID: 31950667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.
    Fabbri E; Bi L; Pergolesi D; Traversa E
    Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Niobium Doped Lanthanum Strontium Ferrite as A Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells.
    Li J; Wei B; Cao Z; Yue X; Zhang Y; Lü Z
    ChemSusChem; 2018 Jan; 11(1):254-263. PubMed ID: 28976645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Undoped Sr
    Skutina L; Filonova E; Medvedev D; Maignan A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.
    Fan Z; Prinz FB
    Nano Lett; 2011 Jun; 11(6):2202-5. PubMed ID: 21563786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methane Decomposition and Carbon Growth on Y
    Kogler M; Köck EM; Perfler L; Bielz T; Stöger-Pollach M; Hetaba W; Willinger M; Huang X; Schuster M; Klötzer B; Penner S
    Chem Mater; 2014 Feb; 26(4):1690-1701. PubMed ID: 24587591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.