These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 23023266)
21. Hierarchical TiO2 microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Wu D; Wang Y; Dong H; Zhu F; Gao S; Jiang K; Fu L; Zhang J; Xu D Nanoscale; 2013 Jan; 5(1):324-30. PubMed ID: 23165289 [TBL] [Abstract][Full Text] [Related]
22. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477 [TBL] [Abstract][Full Text] [Related]
23. A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Damato TC; de Oliveira CC; Ando RA; Camargo PH Langmuir; 2013 Feb; 29(5):1642-9. PubMed ID: 23311597 [TBL] [Abstract][Full Text] [Related]
24. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Yu J; Fan J; Lv K Nanoscale; 2010 Oct; 2(10):2144-9. PubMed ID: 20852787 [TBL] [Abstract][Full Text] [Related]
25. D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells. Katono M; Bessho T; Meng S; Humphry-Baker R; Rothenberger G; Zakeeruddin SM; Kaxiras E; Grätzel M Langmuir; 2011 Dec; 27(23):14248-52. PubMed ID: 21999751 [TBL] [Abstract][Full Text] [Related]
26. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795 [TBL] [Abstract][Full Text] [Related]
27. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
28. Construction of TiO₂ hierarchical nanostructures from nanocrystals and their photocatalytic properties. Zhu T; Li J; Wu Q ACS Appl Mater Interfaces; 2011 Sep; 3(9):3448-53. PubMed ID: 21800846 [TBL] [Abstract][Full Text] [Related]
29. Coupled near- and far-field scattering in silver nanoparticles for high-efficiency, stable, and thin plasmonic dye-sensitized solar cells. Adhyaksa GW; Baek SW; Lee GI; Lee DK; Lee JY; Kang JK ChemSusChem; 2014 Sep; 7(9):2461-8. PubMed ID: 24919576 [TBL] [Abstract][Full Text] [Related]
30. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Park DW; Park KH; Lee JW; Hwang KJ; Choi YK J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045 [TBL] [Abstract][Full Text] [Related]
31. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. Choi H; Chen WT; Kamat PV ACS Nano; 2012 May; 6(5):4418-27. PubMed ID: 22494109 [TBL] [Abstract][Full Text] [Related]
32. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals. Zhang Y; Sun Z; Cheng S; Yan F ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902 [TBL] [Abstract][Full Text] [Related]
33. Titania-coated metal nanostructures. Seh ZW; Liu S; Han MY Chem Asian J; 2012 Oct; 7(10):2174-84. PubMed ID: 22707415 [TBL] [Abstract][Full Text] [Related]
34. Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode. Cant AM; Huang F; Zhang XL; Chen Y; Cheng YB; Amal R Nanoscale; 2014 Apr; 6(7):3875-80. PubMed ID: 24595270 [TBL] [Abstract][Full Text] [Related]
35. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548 [TBL] [Abstract][Full Text] [Related]
36. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting. Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159 [TBL] [Abstract][Full Text] [Related]
37. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. Nath NC; Sarker S; Ahammad AJ; Lee JJ Phys Chem Chem Phys; 2012 Apr; 14(13):4333-8. PubMed ID: 22336885 [TBL] [Abstract][Full Text] [Related]
38. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204 [TBL] [Abstract][Full Text] [Related]
39. Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. Hwang SH; Kim C; Song H; Son S; Jang J ACS Appl Mater Interfaces; 2012 Oct; 4(10):5287-92. PubMed ID: 22985179 [TBL] [Abstract][Full Text] [Related]
40. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]