These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23023294)

  • 1. Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization.
    Koya E; Cruz FC; Ator R; Golden SA; Hoffman AF; Lupica CR; Hope BT
    Nat Neurosci; 2012 Nov; 15(11):1556-62. PubMed ID: 23023294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism.
    McCutcheon JE; Loweth JA; Ford KA; Marinelli M; Wolf ME; Tseng KY
    J Neurosci; 2011 Oct; 31(41):14536-41. PubMed ID: 21994370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Associative Learning Drives the Formation of Silent Synapses in Neuronal Ensembles of the Nucleus Accumbens.
    Whitaker LR; Carneiro de Oliveira PE; McPherson KB; Fallon RV; Planeta CS; Bonci A; Hope BT
    Biol Psychiatry; 2016 Aug; 80(3):246-56. PubMed ID: 26386479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons.
    Ishikawa M; Mu P; Moyer JT; Wolf JA; Quock RM; Davies NM; Hu XT; Schlüter OM; Dong Y
    J Neurosci; 2009 May; 29(18):5820-31. PubMed ID: 19420249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function.
    Grueter BA; Robison AJ; Neve RL; Nestler EJ; Malenka RC
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1923-8. PubMed ID: 23319622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cocaine experience generates silent synapses.
    Huang YH; Lin Y; Mu P; Lee BR; Brown TE; Wayman G; Marie H; Liu W; Yan Z; Sorg BA; Schlüter OM; Zukin RS; Dong Y
    Neuron; 2009 Jul; 63(1):40-7. PubMed ID: 19607791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to cocaine regulates inhibitory synaptic transmission in the nucleus accumbens.
    Otaka M; Ishikawa M; Lee BR; Liu L; Neumann PA; Cui R; Huang YH; Schlüter OM; Dong Y
    J Neurosci; 2013 Apr; 33(16):6753-8. PubMed ID: 23595733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons.
    Roberts-Wolfe D; Bobadilla AC; Heinsbroek JA; Neuhofer D; Kalivas PW
    J Neurosci; 2018 Aug; 38(32):7100-7107. PubMed ID: 29976626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overinhibition of corticostriatal activity following prenatal cocaine exposure.
    Wang W; Nitulescu I; Lewis JS; Lemos JC; Bamford IJ; Posielski NM; Storey GP; Phillips PE; Bamford NS
    Ann Neurol; 2013 Mar; 73(3):355-69. PubMed ID: 23225132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA.
    Bellone C; Mameli M; Lüscher C
    Nat Neurosci; 2011 Oct; 14(11):1439-46. PubMed ID: 21964489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons.
    Hahn J; Hopf FW; Bonci A
    J Neurosci; 2009 May; 29(20):6535-44. PubMed ID: 19458224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli.
    Lammel S; Ion DI; Roeper J; Malenka RC
    Neuron; 2011 Jun; 70(5):855-62. PubMed ID: 21658580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress and Cocaine Trigger Divergent and Cell Type-Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens.
    Khibnik LA; Beaumont M; Doyle M; Heshmati M; Slesinger PA; Nestler EJ; Russo SJ
    Biol Psychiatry; 2016 Jun; 79(11):898-905. PubMed ID: 26164802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.
    Lee BR; Ma YY; Huang YH; Wang X; Otaka M; Ishikawa M; Neumann PA; Graziane NM; Brown TE; Suska A; Guo C; Lobo MK; Sesack SR; Wolf ME; Nestler EJ; Shaham Y; Schlüter OM; Dong Y
    Nat Neurosci; 2013 Nov; 16(11):1644-51. PubMed ID: 24077564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses.
    Wang YQ; Huang YH; Balakrishnan S; Liu L; Wang YT; Nestler EJ; Schlüter OM; Dong Y
    J Neurosci; 2021 Mar; 41(9):1996-2011. PubMed ID: 33436529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporally dependent changes in cocaine-induced synaptic plasticity in the nucleus accumbens shell are reversed by D1-like dopamine receptor stimulation.
    Ortinski PI; Vassoler FM; Carlson GC; Pierce RC
    Neuropsychopharmacology; 2012 Jun; 37(7):1671-82. PubMed ID: 22414814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Synaptogenesis in the Nucleus Accumbens Is Induced by a Single Cocaine Administration and Stabilized by Mitogen-Activated Protein Kinase Interacting Kinase-1 Activity.
    Dos Santos M; Salery M; Forget B; Garcia Perez MA; Betuing S; Boudier T; Vanhoutte P; Caboche J; Heck N
    Biol Psychiatry; 2017 Dec; 82(11):806-818. PubMed ID: 28545678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced inhibition of synaptic transmission by dopamine in the nucleus accumbens during behavioral sensitization to cocaine.
    Beurrier C; Malenka RC
    J Neurosci; 2002 Jul; 22(14):5817-22. PubMed ID: 12122043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.
    Pascoli V; Turiault M; Lüscher C
    Nature; 2011 Dec; 481(7379):71-5. PubMed ID: 22158102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area.
    Argilli E; Sibley DR; Malenka RC; England PM; Bonci A
    J Neurosci; 2008 Sep; 28(37):9092-100. PubMed ID: 18784289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.