These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
651 related articles for article (PubMed ID: 2302384)
1. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Vist MR; Davis JH Biochemistry; 1990 Jan; 29(2):451-64. PubMed ID: 2302384 [TBL] [Abstract][Full Text] [Related]
2. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Huang TH; Lee CW; Das Gupta SK; Blume A; Griffin RG Biochemistry; 1993 Dec; 32(48):13277-87. PubMed ID: 8241184 [TBL] [Abstract][Full Text] [Related]
3. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Quinn PJ; Takahashi H; Hatta I Biophys J; 1995 Apr; 68(4):1374-82. PubMed ID: 7787023 [TBL] [Abstract][Full Text] [Related]
4. Comparisons of lipid dynamics and packing in fully interdigitated monoarachidoylphosphatidylcholine and non-interdigitated dipalmitoylphosphatidylcholine bilayers: cross polarization/magic angle spinning 13C-NMR studies. Wu WG; Chi LM Biochim Biophys Acta; 1990 Jul; 1026(2):225-35. PubMed ID: 2116171 [TBL] [Abstract][Full Text] [Related]
5. Differential scanning calorimetry and 2H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures. Morrow MR; Davis JH Biochemistry; 1988 Mar; 27(6):2024-32. PubMed ID: 2454132 [TBL] [Abstract][Full Text] [Related]
6. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. McMullen TP; McElhaney RN Biochim Biophys Acta; 1995 Mar; 1234(1):90-8. PubMed ID: 7880863 [TBL] [Abstract][Full Text] [Related]
8. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381 [TBL] [Abstract][Full Text] [Related]
9. Influence of the physical state of the membrane on the enzymatic activity and energy of activation of protein kinase C alpha. Jiménez-Monreal AM; Aranda FJ; Micol V; Sánchez-Piñera P; de Godos A; Gómez-Fernández JC Biochemistry; 1999 Jun; 38(24):7747-54. PubMed ID: 10387014 [TBL] [Abstract][Full Text] [Related]
10. Studies on the interaction of human erythrocyte band 3 with membrane lipids using deuterium nuclear magnetic resonance and differential scanning calorimetry. Morrow MR; Davis JH; Sharom FJ; Lamb MP Biochim Biophys Acta; 1986 Jun; 858(1):13-20. PubMed ID: 3707958 [TBL] [Abstract][Full Text] [Related]
11. Structure and thermotropic properties of 1,3-dipalmitoyl-glycero-2-phosphocholine. Serrallach EN; Dijkman R; de Haas GH; Shipley GG J Mol Biol; 1983 Oct; 170(1):155-74. PubMed ID: 6631959 [TBL] [Abstract][Full Text] [Related]
12. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. McMullen TP; Lewis RN; McElhaney RN Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906 [TBL] [Abstract][Full Text] [Related]
13. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
14. Deuterium nuclear magnetic resonance study of the interaction of branched chain compounds (phytanic acid, phytol) with a phospholipid model membrane. Yue J; Thewalt JL; Cushley RJ Chem Phys Lipids; 1988 Dec; 49(3):205-13. PubMed ID: 3240564 [TBL] [Abstract][Full Text] [Related]
15. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
16. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Curatolo W; Sears B; Neuringer LJ Biochim Biophys Acta; 1985 Jul; 817(2):261-70. PubMed ID: 4016105 [TBL] [Abstract][Full Text] [Related]
17. Interaction of cyclosporin A with dipalmitoylphosphatidylcholine. Wiedmann TS; Trouard T; Shekar SC; Polikandritou M; Rahman YE Biochim Biophys Acta; 1990 Mar; 1023(1):12-8. PubMed ID: 2317490 [TBL] [Abstract][Full Text] [Related]
18. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Wenk MR; Alt T; Seelig A; Seelig J Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676 [TBL] [Abstract][Full Text] [Related]
19. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. Otten D; Löbbecke L; Beyer K Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511 [TBL] [Abstract][Full Text] [Related]
20. The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. López-García F; Villalaín J; Gómez-Fernández JC; Quinn PJ Biophys J; 1994 Jun; 66(6):1991-2004. PubMed ID: 8075333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]