These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23023883)

  • 1. Intense emotional experiences and enhanced training prevent memory loss induced by post-training amnesic treatments administered to the striatum, amygdala, hippocampus or substantia nigra.
    Prada-Alcala RA; Medina AC; Lopez NS; Quirarte GL
    Rev Neurosci; 2012; 23(5-6):501-8. PubMed ID: 23023883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The consolidation of memory, one century on].
    Prado-Alcala RA; Quirarte GL
    Rev Neurol; 2007 Sep 1-15; 45(5):284-92. PubMed ID: 17876740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intense aversive training protects memory from the amnestic effects of hippocampal inactivation.
    Garín-Aguilar ME; Medina AC; Quirarte GL; McGaugh JL; Prado-Alcalá RA
    Hippocampus; 2014 Jan; 24(1):102-12. PubMed ID: 24123595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial self-stimulation pathways as substrate for memory consolidation.
    Routtenberg A
    Nebr Symp Motiv; 1975; 22():161-82. PubMed ID: 1107866
    [No Abstract]   [Full Text] [Related]  

  • 5. Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia.
    Diamond DM; Park CR; Campbell AM; Woodson JC
    Hippocampus; 2005; 15(8):1006-25. PubMed ID: 16086429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced training protects memory against amnesia produced by concurrent inactivation of amygdala and striatum, amygdala and substantia nigra, or striatum and substantia nigra.
    Salado-Castillo R; Sánchez-Alavéz M; Quirarte GL; Martínez García MI; Prado-Alcalá RA
    Front Behav Neurosci; 2011 Nov; 5():83. PubMed ID: 22203796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The indirect amygdala-dorsal striatum pathway mediates conditioned freezing: insights on emotional memory networks.
    Ferreira TL; Shammah-Lagnado SJ; Bueno OF; Moreira KM; Fornari RV; Oliveira MG
    Neuroscience; 2008 Apr; 153(1):84-94. PubMed ID: 18367339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amygdala, the hippocampus, and emotional modulation of memory.
    Richter-Levin G
    Neuroscientist; 2004 Feb; 10(1):31-9. PubMed ID: 14987446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interactions between the hippocampus and the amygdala in synaptic plasticity processes. A key to understanding the relations between motivation and memory].
    Almaguer-Melián W; Bergado-Rosado JA
    Rev Neurol; 2002 Sep 16-30; 35(6):586-93. PubMed ID: 12389177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences.
    Roozendaal B; Barsegyan A; Lee S
    Prog Brain Res; 2008; 167():79-97. PubMed ID: 18037008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex associative structure formed in the mammalian brain during acquisition of a simple visual discrimination task: dorsolateral striatum, amygdala, and hippocampus.
    McDonald RJ; King AL; Wasiak TD; Zelinski EL; Hong NS
    Hippocampus; 2007; 17(9):759-74. PubMed ID: 17623852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory--a century of consolidation.
    McGaugh JL
    Science; 2000 Jan; 287(5451):248-51. PubMed ID: 10634773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amygdala and emotional modulation of competition between cognitive and habit memory.
    Wingard JC; Packard MG
    Behav Brain Res; 2008 Nov; 193(1):126-31. PubMed ID: 18565602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive neuroscience of emotional memory.
    LaBar KS; Cabeza R
    Nat Rev Neurosci; 2006 Jan; 7(1):54-64. PubMed ID: 16371950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal characterization of subcortical nuclei in mnemonic processes: results of tetrodotoxin reversible inactivation studies in the rat.
    Ambrogi Lorenzini CG; Baldi E; Bucherelli C; Sacchetti B; Tassoni G
    Arch Ital Biol; 1998 Nov; 136(4):279-96. PubMed ID: 9834841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical tests of the functional significance of amygdala-based modulation of hippocampal representations: evidence for multiple memory consolidation pathways.
    McDonald RJ; Lo Q; King AL; Wasiak TD; Hong NS
    Eur J Neurosci; 2007 Mar; 25(5):1568-80. PubMed ID: 17425583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.
    Huerta-Rivas A; Pérez-García G; González-Espinosa C; Meneses A
    Neurobiol Learn Mem; 2010 Jan; 93(1):99-110. PubMed ID: 19733250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-training N-methyl-D-aspartate receptor blockade offers protection from retrograde interference but does not affect consolidation of weak or strong memory traces in the water maze.
    Day M; Langston RF
    Neuroscience; 2006; 137(1):19-28. PubMed ID: 16289349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral inhibition of gamma-aminobutyric acid type A receptor function within the basolateral amygdala blocked propofol-induced amnesia and activity-regulated cytoskeletal protein expression inhibition in the hippocampus.
    Ren Y; Zhang FJ; Xue QS; Zhao X; Yu BW
    Anesthesiology; 2008 Nov; 109(5):775-81. PubMed ID: 18946287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training.
    Bello-Medina PC; Flores G; Quirarte GL; McGaugh JL; Prado Alcalá RA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6516-E6525. PubMed ID: 27698138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.