BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 2302406)

  • 21. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ontogeny of Na+/D-glucose cotransport in guinea-pig jejunal vesicles: only one system is involved at both 20 degrees C and 35 degrees C.
    Malo C
    Biochim Biophys Acta; 1993 Dec; 1153(2):299-307. PubMed ID: 8274501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tegumental glucose permeability in male and female Schistosoma mansoni.
    Cornford EM; Fitzpatrick AM; Quirk TL; Diep CP; Landaw EM
    J Parasitol; 1988 Feb; 74(1):116-28. PubMed ID: 3357096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jejunal and cecal 3-oxy-methyl-D-glucose absorption in chicken using a perfusion system in vivo.
    Vinardell MP; Lopera MT
    Comp Biochem Physiol A Comp Physiol; 1987; 86(4):625-7. PubMed ID: 2882891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absorption of 3-oxy-methyl-D-glucose by chicken cecum and jejunum in vivo.
    Vinardell MP; Lopera MT; Moretó M
    Comp Biochem Physiol A Comp Physiol; 1986; 85(1):171-3. PubMed ID: 2876813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hexose transport in human adipocytes: factors influencing the response to insulin and kinetics of methylglucose and glucose transport.
    Pedersen O; Gliemann J
    Diabetologia; 1981 Jun; 20(6):630-5. PubMed ID: 7021279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intestinal sugar transport in experimental diabetes.
    Csáky TZ; Fischer E
    Diabetes; 1981 Jul; 30(7):568-74. PubMed ID: 6454600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A D-mannose transport system in renal brush-border membranes.
    Mendelssohn DC; Silverman M
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1100-7. PubMed ID: 2603956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic characterization of apical D-fructose transport in chicken jejunum.
    Garriga C; Barfull A; Planas JM
    J Membr Biol; 2004 Jan; 197(1):71-6. PubMed ID: 15014919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proximo-distal gradient of Na+-dependent D-glucose transport activity in the brush border membrane vesicles from the human fetal small intestine.
    Malo C; Berteloot A
    FEBS Lett; 1987 Aug; 220(1):201-5. PubMed ID: 3609312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of growth hormone on intestinal Na+/glucose cotransporter activity.
    Tavakkolizadeh A; Shen R; Jasleen J; Soybel DI; Jacobs DO; Zinner MJ; Ashley SW; Whang EE
    JPEN J Parenter Enteral Nutr; 2001; 25(1):18-22. PubMed ID: 11190985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of glucose and fructose in rat hepatocytes at 37 degrees C.
    Okuno Y; Gliemann J
    Biochim Biophys Acta; 1986 Nov; 862(2):329-34. PubMed ID: 3778895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus.
    Malo C; Berteloot A
    J Membr Biol; 1991 Jun; 122(2):127-41. PubMed ID: 1895338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intestinal adaptation to diabetes. Altered Na-dependent nutrient absorption in streptozocin-treated chronically diabetic rats.
    Fedorak RN; Chang EB; Madara JL; Field M
    J Clin Invest; 1987 Jun; 79(6):1571-8. PubMed ID: 2953760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of hyperglycaemia on sugar transport in the isolated mucosa of guinea-pig small intestine.
    Fischer E; Lauterbach F
    J Physiol; 1984 Oct; 355():567-86. PubMed ID: 6492003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.