These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23024402)

  • 41. Genetic characterization of a novel Salinicola salarius isolate applied for the bioconversion of agro-industrial wastes into polyhydroxybutyrate.
    Abdelrahman SA; Barakat OS; Ahmed MN
    Microb Cell Fact; 2024 Feb; 23(1):56. PubMed ID: 38368375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium.
    Kulpreecha S; Boonruangthavorn A; Meksiriporn B; Thongchul N
    J Biosci Bioeng; 2009 Mar; 107(3):240-5. PubMed ID: 19269585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Examination of toxin production from environmental Bacillus cereus and Bacillus thuringiensis].
    Mikami T; Horikawa T; Murakami T; Sato N; Ono Y; Matsumoto T; Yamakawa A; Murayama S; Katagiri S; Suzuki M
    Yakugaku Zasshi; 1995 Sep; 115(9):742-8. PubMed ID: 8523268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Valorization of Waste from Argan Seeds for Polyhydroxybutyrate Production Using Bacterial Strains Isolated from Argan Soils.
    Aragosa A; Specchia V; Frigione M
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112119
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cost-effective-substrates for production of poly-β-hydroxybutyrate by a newly isolated Bacillus cereus PS-10.
    Sharma P; Bajaj BK
    J Environ Biol; 2015 Nov; 36(6):1297-304. PubMed ID: 26688964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of poly(3-hydroxybutyrate) synthesis from a novel obligate alkaliphilic Bacillus marmarensis and generation of its composite scaffold via electrospinning.
    Özgören T; Pinar O; Bozdağ G; Denizci AA; Gündüz O; Çakır Hatır P; Kazan D
    Int J Biol Macromol; 2018 Nov; 119():982-991. PubMed ID: 30092306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.
    Hariram U; Labbé R
    J Food Prot; 2015 Mar; 78(3):590-6. PubMed ID: 25719886
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions.
    Thorsen L; Budde BB; Henrichsen L; Martinussen T; Jakobsen M
    Int J Food Microbiol; 2009 Aug; 134(1-2):133-9. PubMed ID: 19428136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates.
    Hill KK; Ticknor LO; Okinaka RT; Asay M; Blair H; Bliss KA; Laker M; Pardington PE; Richardson AP; Tonks M; Beecher DJ; Kemp JD; Kolstø AB; Wong AC; Keim P; Jackson PJ
    Appl Environ Microbiol; 2004 Feb; 70(2):1068-80. PubMed ID: 14766590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis.
    Agaisse H; Gominet M; Okstad OA; Kolstø AB; Lereclus D
    Mol Microbiol; 1999 Jun; 32(5):1043-53. PubMed ID: 10361306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fermentative hydrogen production and bioelectricity generation from food based industrial waste: An integrative approach.
    Ramu SM; Thulasinathan B; Gujuluva Hari D; Bora A; Jayabalan T; Mohammed SN; Doble M; Arivalagan P; Alagarsamy A
    Bioresour Technol; 2020 Aug; 310():123447. PubMed ID: 32353772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus.
    Wang P; Zhu Y; Zhang Y; Zhang C; Xu J; Deng Y; Peng D; Ruan L; Sun M
    Microb Cell Fact; 2016 Jun; 15(1):108. PubMed ID: 27286821
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack.
    Thorsen L; Abdelgadir WS; Rønsbo MH; Abban S; Hamad SH; Nielsen DS; Jakobsen M
    Int J Food Microbiol; 2011 Apr; 146(3):244-52. PubMed ID: 21429611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conjugal transfer between Bacillus thuringiensis and Bacillus cereus strains is not directly correlated with growth of recipient strains.
    Santos CA; Vilas-Bôas GT; Lereclus D; Suzuki MT; Angelo EA; Arantes OM
    J Invertebr Pathol; 2010 Oct; 105(2):171-5. PubMed ID: 20600090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polyhydroxybutyrate production from ultrasound-aided alkaline pretreated finger millet straw using Bacillus megaterium strain CAM12.
    Silambarasan S; Logeswari P; Sivaramakrishnan R; Pugazhendhi A; Kamaraj B; Ruiz A; Ramadoss G; Cornejo P
    Bioresour Technol; 2021 Apr; 325():124632. PubMed ID: 33485084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-silico analysis of a halophilic bacterial isolate-Bacillus pseudomycoides SAS-B1 and its polyhydroxybutyrate production through fed-batch approach under differential salt conditions.
    Anjana ; Rawat S; Goswami S
    Int J Biol Macromol; 2023 Feb; 229():372-387. PubMed ID: 36563813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis.
    Hendriksen NB; Hansen BM
    Folia Microbiol (Praha); 2011 Nov; 56(6):535-9. PubMed ID: 22083787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design.
    Ramadas NV; Soccol CR; Pandey A
    Appl Biochem Biotechnol; 2010 Oct; 162(4):996-1007. PubMed ID: 19812909
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.
    Juergensmeyer MA; Gingras BA; Restaino L; Frampton EW
    J Food Prot; 2006 Aug; 69(8):2002-6. PubMed ID: 16924932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Bacillus cereus by Fourier transform infrared spectroscopy (FTIR).
    Lin SF; Schraft H; Griffiths MW
    J Food Prot; 1998 Jul; 61(7):921-3. PubMed ID: 9678183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.