These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23024604)

  • 1. Evolution of copper transporting ATPases in eukaryotic organisms.
    Gupta A; Lutsenko S
    Curr Genomics; 2012 Apr; 13(2):124-33. PubMed ID: 23024604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA.
    Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M
    Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function and regulation of human copper-transporting ATPases.
    Lutsenko S; Barnes NL; Bartee MY; Dmitriev OY
    Physiol Rev; 2007 Jul; 87(3):1011-46. PubMed ID: 17615395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-transporting ATPases throughout the animal evolution - From clinics to basal neuron-less animals.
    Fodor I; Yañez-Guerra LA; Kiss B; Büki G; Pirger Z
    Gene; 2023 Nov; 885():147720. PubMed ID: 37597707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.
    Linz R; Lutsenko S
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):403-7. PubMed ID: 18000748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural organization of human Cu-transporting ATPases: learning from building blocks.
    Barry AN; Shinde U; Lutsenko S
    J Biol Inorg Chem; 2010 Jan; 15(1):47-59. PubMed ID: 19851794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees.
    Fagan MJ; Saier MH
    J Mol Evol; 1994 Jan; 38(1):57-99. PubMed ID: 8151716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers
    Jayakanthan S; Braiterman LT; Hasan NM; Unger VM; Lutsenko S
    J Biol Chem; 2017 Nov; 292(46):18760-18774. PubMed ID: 28842499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the N-terminal tail of metal-transporting P(1B)-type ATPases from genome-wide analysis and molecular dynamics simulations.
    Sharma S; Rosato A
    J Chem Inf Model; 2009 Jan; 49(1):76-83. PubMed ID: 19090784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive phylogenetic analysis of copper transporting P
    Cubillas C; Miranda-Sánchez F; González-Sánchez A; Elizalde JP; Vinuesa P; Brom S; García-de Los Santos A
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28217917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
    Hatori Y; Lewis D; Toyoshima C; Inesi G
    Biochemistry; 2009 Jun; 48(22):4871-80. PubMed ID: 19364131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional insights of Wilson disease copper-transporting ATPase.
    Fatemi N; Sarkar B
    J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F.
    Morgan CT; Tsivkovskii R; Kosinsky YA; Efremov RG; Lutsenko S
    J Biol Chem; 2004 Aug; 279(35):36363-71. PubMed ID: 15205462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis.
    Banci L; Bertini I; Ciofi-Baffoni S; Gonnelli L; Su XC
    J Biol Chem; 2003 Dec; 278(50):50506-13. PubMed ID: 14514665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of proton pumping ATPases: Rooting the tree of life.
    Gogarten JP; Taiz L
    Photosynth Res; 1992 Aug; 33(2):137-46. PubMed ID: 24408574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.