These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23024604)

  • 21. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
    Dmitriev O; Tsivkovskii R; Abildgaard F; Morgan CT; Markley JL; Lutsenko S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5302-7. PubMed ID: 16567646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance.
    Lutsenko S; Gupta A; Burkhead JL; Zuzel V
    Arch Biochem Biophys; 2008 Aug; 476(1):22-32. PubMed ID: 18534184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level.
    Bartee MY; Lutsenko S
    Biometals; 2007 Jun; 20(3-4):627-37. PubMed ID: 17268820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells.
    Tsivkovskii R; Eisses JF; Kaplan JH; Lutsenko S
    J Biol Chem; 2002 Jan; 277(2):976-83. PubMed ID: 11677246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A.
    Yu CH; Dolgova NV; Dmitriev OY
    IUBMB Life; 2017 Apr; 69(4):226-235. PubMed ID: 28271598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.
    Cater MA; Forbes J; La Fontaine S; Cox D; Mercer JF
    Biochem J; 2004 Jun; 380(Pt 3):805-13. PubMed ID: 14998371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper transport and its defect in Wilson disease: characterization of the copper-binding domain of Wilson disease ATPase.
    Sarkar B
    J Inorg Biochem; 2000 Apr; 79(1-4):187-91. PubMed ID: 10830865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper transporting P-type ATPases and human disease.
    Cox DW; Moore SD
    J Bioenerg Biomembr; 2002 Oct; 34(5):333-8. PubMed ID: 12539960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli.
    Hou ZJ; Narindrasorasak S; Bhushan B; Sarkar B; Mitra B
    J Biol Chem; 2001 Nov; 276(44):40858-63. PubMed ID: 11527979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B.
    Tsivkovskii R; Efremov RG; Lutsenko S
    J Biol Chem; 2003 Apr; 278(15):13302-8. PubMed ID: 12551905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanism of copper transport in Wilson disease.
    Fatemi N; Sarkar B
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):695-8. PubMed ID: 12426114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clusterin (apolipoprotein J), a molecular chaperone that facilitates degradation of the copper-ATPases ATP7A and ATP7B.
    Materia S; Cater MA; Klomp LW; Mercer JF; La Fontaine S
    J Biol Chem; 2011 Mar; 286(12):10073-83. PubMed ID: 21242307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.
    Völlmecke C; Drees SL; Reimann J; Albers SV; Lübben M
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1622-1633. PubMed ID: 22361944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B.
    Tadini-Buoninsegni F; Smeazzetto S
    IUBMB Life; 2017 Apr; 69(4):218-225. PubMed ID: 28164426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of a copper-transporting PIB-type ATPase.
    Gourdon P; Liu XY; Skjørringe T; Morth JP; Møller LB; Pedersen BP; Nissen P
    Nature; 2011 Jun; 475(7354):59-64. PubMed ID: 21716286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease.
    Forbes JR; Hsi G; Cox DW
    J Biol Chem; 1999 Apr; 274(18):12408-13. PubMed ID: 10212214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.