These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 23024658)
21. The regeneration capacity of the flatworm Macrostomum lignano--on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Egger B; Ladurner P; Nimeth K; Gschwentner R; Rieger R Dev Genes Evol; 2006 Oct; 216(10):565-77. PubMed ID: 16604349 [TBL] [Abstract][Full Text] [Related]
22. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Ustyantsev KV; Vavilova VY; Blinov AG; Berezikov EV Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):108-116. PubMed ID: 34901708 [TBL] [Abstract][Full Text] [Related]
23. Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Pfister D; De Mulder K; Hartenstein V; Kuales G; Borgonie G; Marx F; Morris J; Ladurner P Dev Biol; 2008 Jul; 319(1):146-59. PubMed ID: 18405892 [TBL] [Abstract][Full Text] [Related]
24. Adhesive organ regeneration in Macrostomum lignano. Lengerer B; Hennebert E; Flammang P; Salvenmoser W; Ladurner P BMC Dev Biol; 2016 Jun; 16(1):20. PubMed ID: 27255153 [TBL] [Abstract][Full Text] [Related]
25. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Zadesenets KS; Schärer L; Rubtsov NB Sci Rep; 2017 Jul; 7(1):6066. PubMed ID: 28729552 [TBL] [Abstract][Full Text] [Related]
26. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Blackiston DJ; McLaughlin KA; Levin M Cell Cycle; 2009 Nov; 8(21):3527-36. PubMed ID: 19823012 [TBL] [Abstract][Full Text] [Related]
27. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Ma Y; He J; Sieber M; von Frieling J; Bruchhaus I; Baines JF; Bickmeyer U; Roeder T Commun Biol; 2023 Mar; 6(1):289. PubMed ID: 36934156 [TBL] [Abstract][Full Text] [Related]
28. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. Cervera J; Pai VP; Levin M; Mafe S Prog Biophys Mol Biol; 2019 Dec; 149():39-53. PubMed ID: 31255702 [TBL] [Abstract][Full Text] [Related]
29. Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. De Mulder K; Pfister D; Kuales G; Egger B; Salvenmoser W; Willems M; Steger J; Fauster K; Micura R; Borgonie G; Ladurner P Dev Biol; 2009 Oct; 334(1):198-212. PubMed ID: 19631639 [TBL] [Abstract][Full Text] [Related]
30. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine. Pietak A; Levin M Front Bioeng Biotechnol; 2016; 4():55. PubMed ID: 27458581 [TBL] [Abstract][Full Text] [Related]
31. Measurement of S-phase duration of adult stem cells in the flatworm Macrostomum lignano by double replication labelling and quantitative colocalization analysis. Verdoodt F; Willems M; Dhondt I; Houthoofd W; Bert W; De Vos WH Cell Biol Int; 2012; 36(12):1251-9. PubMed ID: 23005924 [TBL] [Abstract][Full Text] [Related]
32. Stem cells propagate their DNA by random segregation in the flatworm Macrostomum lignano. Verdoodt F; Willems M; Mouton S; De Mulder K; Bert W; Houthoofd W; Smith J; Ladurner P PLoS One; 2012; 7(1):e30227. PubMed ID: 22276162 [TBL] [Abstract][Full Text] [Related]
33. Ionic messengers in development and cancer. Moreau M; Leclerc C Int J Dev Biol; 2015; 59(7-9):257-60. PubMed ID: 26679943 [TBL] [Abstract][Full Text] [Related]
34. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. Levin M J Physiol; 2014 Jun; 592(11):2295-305. PubMed ID: 24882814 [TBL] [Abstract][Full Text] [Related]
35. A genetic and microscopy toolkit for manipulating and monitoring regeneration in Macrostomum lignano. Hall RN; Li H; Chai C; Vermeulen S; Bigasin RR; Song ES; Sarkar SR; Gibson J; Prakash M; Fire AZ; Wang B Cell Rep; 2024 Oct; 43(11):114892. PubMed ID: 39427313 [TBL] [Abstract][Full Text] [Related]
36. Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange. Schotthöfer SK; Bohrmann J BMC Dev Biol; 2020 Jul; 20(1):15. PubMed ID: 32635900 [TBL] [Abstract][Full Text] [Related]
37. Membrane potential and cancer progression. Yang M; Brackenbury WJ Front Physiol; 2013; 4():185. PubMed ID: 23882223 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium. Weiß I; Bohrmann J BMC Dev Biol; 2019 Jun; 19(1):12. PubMed ID: 31226923 [TBL] [Abstract][Full Text] [Related]
39. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Adams DS; Levin M Cell Tissue Res; 2013 Apr; 352(1):95-122. PubMed ID: 22350846 [TBL] [Abstract][Full Text] [Related]
40. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Levin M Bioessays; 2012 Mar; 34(3):205-17. PubMed ID: 22237730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]