These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 23024702)
1. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Haque F; Shu D; Shu Y; Shlyakhtenko LS; Rychahou PG; Evers BM; Guo P Nano Today; 2012 Aug; 7(4):245-257. PubMed ID: 23024702 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. Shu Y; Haque F; Shu D; Li W; Zhu Z; Kotb M; Lyubchenko Y; Guo P RNA; 2013 Jun; 19(6):767-77. PubMed ID: 23604636 [TBL] [Abstract][Full Text] [Related]
3. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Shu Y; Cinier M; Shu D; Guo P Methods; 2011 Jun; 54(2):204-14. PubMed ID: 21320601 [TBL] [Abstract][Full Text] [Related]
4. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology. Shu D; Li H; Shu Y; Xiong G; Carson WE; Haque F; Xu R; Guo P ACS Nano; 2015 Oct; 9(10):9731-40. PubMed ID: 26387848 [TBL] [Abstract][Full Text] [Related]
5. Using Planar Phi29 pRNA Three-Way Junction to Control Size and Shape of RNA Nanoparticles for Biodistribution Profiling in Mice. Haque F; Xu C; Jasinski DL; Li H; Guo P Methods Mol Biol; 2017; 1632():359-380. PubMed ID: 28730451 [TBL] [Abstract][Full Text] [Related]
6. Fluorogenic RNA nanoparticles for monitoring RNA folding and degradation in real time in living cells. Reif R; Haque F; Guo P Nucleic Acid Ther; 2012 Dec; 22(6):428-37. PubMed ID: 23113765 [TBL] [Abstract][Full Text] [Related]
7. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Shu D; Khisamutdinov EF; Zhang L; Guo P Nucleic Acids Res; 2014 Jan; 42(2):e10. PubMed ID: 24084081 [TBL] [Abstract][Full Text] [Related]
8. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Binzel DW; Shu Y; Li H; Sun M; Zhang Q; Shu D; Guo B; Guo P Mol Ther; 2016 Aug; 24(7):1267-77. PubMed ID: 27125502 [TBL] [Abstract][Full Text] [Related]
9. Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Shu Y; Cinier M; Fox SR; Ben-Johnathan N; Guo P Mol Ther; 2011 Jul; 19(7):1304-11. PubMed ID: 21468002 [TBL] [Abstract][Full Text] [Related]
10. Functional assays for specific targeting and delivery of RNA nanoparticles to brain tumor. Lee TJ; Haque F; Vieweger M; Yoo JY; Kaur B; Guo P; Croce CM Methods Mol Biol; 2015; 1297():137-52. PubMed ID: 25896001 [TBL] [Abstract][Full Text] [Related]
11. Bottom-up assembly of RNA nanoparticles containing phi29 motor pRNA to silence the asthma STAT5b gene. Qiu C; Peng WK; Shi F; Zhang T Genet Mol Res; 2012 Sep; 11(3):3236-45. PubMed ID: 23079817 [TBL] [Abstract][Full Text] [Related]
12. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. Jasinski DL; Binzel DW; Guo P ACS Nano; 2019 Apr; 13(4):4603-4612. PubMed ID: 30888787 [TBL] [Abstract][Full Text] [Related]
13. Advancement of the Emerging Field of RNA Nanotechnology. Jasinski D; Haque F; Binzel DW; Guo P ACS Nano; 2017 Feb; 11(2):1142-1164. PubMed ID: 28045501 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Shu D; Shu Y; Haque F; Abdelmawla S; Guo P Nat Nanotechnol; 2011 Sep; 6(10):658-67. PubMed ID: 21909084 [TBL] [Abstract][Full Text] [Related]
15. Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. Binzel DW; Guo S; Yin H; Lee TJ; Liu S; Shu D; Guo P Mol Ther Nucleic Acids; 2021 Sep; 25():524-535. PubMed ID: 34589275 [TBL] [Abstract][Full Text] [Related]
16. Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells. Zhang H; Pi F; Shu D; Vieweger M; Guo P Methods Mol Biol; 2015; 1297():95-111. PubMed ID: 25895998 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Polyvalent Therapeutic RNA Nanoparticles for Specific Delivery of siRNA, Ribozyme and Drugs to Targeted Cells for Cancer Therapy. Shu Y; Shu D; Diao Z; Shen G; Guo P IEEE NIH Life Sci Syst Appl Workshop; 2009 May; 2009():9-12. PubMed ID: 21243099 [TBL] [Abstract][Full Text] [Related]
18. Methods and assays for specific targeting and delivery of RNA nanoparticles to cancer metastases. Rychahou P; Shu Y; Haque F; Hu J; Guo P; Evers BM Methods Mol Biol; 2015; 1297():121-35. PubMed ID: 25896000 [TBL] [Abstract][Full Text] [Related]
19. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Xu C; Haque F; Jasinski DL; Binzel DW; Shu D; Guo P Cancer Lett; 2018 Feb; 414():57-70. PubMed ID: 28987384 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, conjugation, and labeling of multifunctional pRNA nanoparticles for specific delivery of siRNA, drugs, and other therapeutics to target cells. Guo P; Shu Y; Binzel D; Cinier M Methods Mol Biol; 2012; 928():197-219. PubMed ID: 22956144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]