BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23024907)

  • 1. Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise.
    Basevi HR; Tichauer KM; Leblond F; Dehghani H; Guggenheim JA; Holt RW; Styles IB
    Biomed Opt Express; 2012 Sep; 3(9):2131-41. PubMed ID: 23024907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian sparse-based reconstruction in bioluminescence tomography improves localization accuracy and reduces computational time.
    Feng J; Jia K; Li Z; Pogue BW; Yang M; Wang Y
    J Biophotonics; 2018 Apr; 11(4):e201700214. PubMed ID: 29119702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel l 2,1-norm optimization method for fluorescence molecular tomography reconstruction.
    Jiang S; Liu J; An Y; Zhang G; Ye J; Mao Y; He K; Chi C; Tian J
    Biomed Opt Express; 2016 Jun; 7(6):2342-59. PubMed ID: 27375949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information.
    Lu Y; Zhang X; Douraghy A; Stout D; Tian J; Chan TF; Chatziioannou AF
    Opt Express; 2009 May; 17(10):8062-80. PubMed ID: 19434138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization.
    Zhu Y; Jha AK; Wong DF; Rahmim A
    Biomed Opt Express; 2018 Jul; 9(7):3106-3121. PubMed ID: 29984086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing.
    Zhu Y; Jha AK; Dreyer JK; Le HND; Kang JU; Roland PE; Wong DF; Rahmim A
    Proc SPIE Int Soc Opt Eng; 2017 Jan; 10059():. PubMed ID: 28596634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new adaptive-weighted total variation sparse-view computed tomography image reconstruction with local improved gradient information.
    Wang Y; Qi Z
    J Xray Sci Technol; 2018; 26(6):957-975. PubMed ID: 30149492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical reconstruction method for bioluminescence tomography.
    Cong W; Wang G; Kumar D; Liu Y; Jiang M; Wang L; Hoffman E; McLennan G; McCray P; Zabner J; Cong A
    Opt Express; 2005 Sep; 13(18):6756-71. PubMed ID: 19498692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending.
    Hofmann C; Sawall S; Knaup M; Kachelrieß M
    Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing.
    Jin A; Yazici B; Ntziachristos V
    IEEE Trans Image Process; 2014 Jun; 23(6):2609-24. PubMed ID: 24815621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast source reconstruction for bioluminescence tomography based on sparse regularization.
    Yu J; Liu F; Wu J; Jiao L; He X
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2583-6. PubMed ID: 20639167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar.
    Nguyen NH; Berry P; Tran HT
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMPIRICAL AVERAGE-CASE RELATION BETWEEN UNDERSAMPLING AND SPARSITY IN X-RAY CT.
    Jørgensen JS; Sidky EY; Hansen PC; Pan X
    Inverse Probl Imaging (Springfield); 2015 May; 9(2):431-446. PubMed ID: 27019675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Block Sparse Bayesian Learning Method Using K-Nearest Neighbor Strategy for Accurate Tumor Morphology Reconstruction in Bioluminescence Tomography.
    Yin L; Wang K; Tong T; An Y; Meng H; Yang X; Tian J
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):2023-2032. PubMed ID: 31751214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of an ultrasound and model guided permissible region improves quantitative source recovery in bioluminescence tomography.
    Jayet B; Morgan SP; Dehghani H
    Biomed Opt Express; 2018 Mar; 9(3):1360-1374. PubMed ID: 29541527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regularized reconstruction based on joint L
    Liu T; Rong J; Gao P; Pu H; Zhang W; Zhang X; Liang Z; Lu H
    Biomed Opt Express; 2019 Jan; 10(1):1-17. PubMed ID: 30775079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioluminescence tomography with structural information estimated via statistical mouse atlas registration.
    Zhang B; Yin W; Liu H; Cao X; Wang H
    Biomed Opt Express; 2018 Aug; 9(8):3544-3558. PubMed ID: 30338139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-modal molecular diffuse optical tomography system for small animal imaging.
    Guggenheim JA; Basevi HR; Frampton J; Styles IB; Dehghani H
    Meas Sci Technol; 2013; 24(10):105405. PubMed ID: 24954977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparsity fine tuning in wavelet domain with application to compressive image reconstruction.
    Dong W; Wu X; Shi G
    IEEE Trans Image Process; 2014 Dec; 23(12):5249-62. PubMed ID: 25330492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.