These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23025251)

  • 1. Molecular dynamics simulations of the thermal stability of tteRBP and ecRBP.
    Feng XL; Zhao X; Yu H; Sun TD; Huang XR
    J Biomol Struct Dyn; 2013 Oct; 31(10):1086-100. PubMed ID: 23025251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog.
    Cuneo MJ; Tian Y; Allert M; Hellinga HW
    BMC Struct Biol; 2008 Mar; 8():20. PubMed ID: 18373848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.
    Chen L; Li X; Wang R; Fang F; Yang W; Kan W
    J Biomol Struct Dyn; 2016 Jul; 34(7):1576-89. PubMed ID: 26292713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced conformational changes in a thermophilic ribose-binding protein.
    Cuneo MJ; Beese LS; Hellinga HW
    BMC Struct Biol; 2008 Nov; 8():50. PubMed ID: 19019243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of the bacterial periplasmic heme binding proteins ShuT and PhuT.
    Liu M; Su JG; Kong R; Sun TG; Tan JJ; Chen WZ; Wang CX
    Biophys Chem; 2008 Nov; 138(1-2):42-9. PubMed ID: 18818010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence-based docking of the urease activation complex.
    Ligabue-Braun R; Real-Guerra R; Carlini CR; Verli H
    J Biomol Struct Dyn; 2013; 31(8):854-61. PubMed ID: 22962938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the drug resistance induced by the BaDHPS mutations: molecular dynamic simulations and MM/GBSA studies.
    Chu WT; Zhang JL; Zheng QC; Chen L; Xue Q; Zhang HX
    J Biomol Struct Dyn; 2013 Oct; 31(10):1127-36. PubMed ID: 23030549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do homologous thermophilic-mesophilic proteins exhibit similar structures and dynamics at optimal growth temperatures? A molecular dynamics simulation study.
    Basu S; Sen S
    J Chem Inf Model; 2013 Feb; 53(2):423-34. PubMed ID: 23267663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the lid movements of LolA in Escherichia coli using molecular dynamics simulation and in silico point mutation.
    Murahari P; Anishetty S; Pennathur G
    Comput Biol Chem; 2013 Dec; 47():71-80. PubMed ID: 23962984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".
    Paul M; Hazra M; Barman A; Hazra S
    J Biomol Struct Dyn; 2014; 32(6):928-49. PubMed ID: 23796004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure and backbone dynamics of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin mutant: a molecular analysis of its reduced thermal stability.
    Leone M; Di Lello P; Ohlenschläger O; Pedone EM; Bartolucci S; Rossi M; Di Blasio B; Pedone C; Saviano M; Isernia C; Fattorusso R
    Biochemistry; 2004 May; 43(20):6043-58. PubMed ID: 15147188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating and conduction of nano-channel forming proteins: a computational approach.
    Besya AB; Mobasheri H; Ejtehadi MR
    J Biomol Struct Dyn; 2013; 31(8):818-28. PubMed ID: 22928968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy.
    Vercillo NC; Herald KJ; Fox JM; Der BS; Dattelbaum JD
    Protein Sci; 2007 Mar; 16(3):362-8. PubMed ID: 17242374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation.
    Xu X; Su J; Chen W; Wang C
    J Biomol Struct Dyn; 2011 Apr; 28(5):717-27. PubMed ID: 21294584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.
    Silva DA; Domínguez-Ramírez L; Rojo-Domínguez A; Sosa-Peinado A
    Proteins; 2011 Jul; 79(7):2097-108. PubMed ID: 21538545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of chaperone-induced changes in a protein folding pathway.
    Bechtluft P; van Leeuwen RG; Tyreman M; Tomkiewicz D; Nouwen N; Tepper HL; Driessen AJ; Tans SJ
    Science; 2007 Nov; 318(5855):1458-61. PubMed ID: 18048690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.