These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 23025272)

  • 1. Hemoglobin redox reactions and red blood cell aging.
    Rifkind JM; Nagababu E
    Antioxid Redox Signal; 2013 Jun; 18(17):2274-83. PubMed ID: 23025272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis.
    Wang Q; Zennadi R
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells.
    Maheshwari N; Qasim N; Anjum R; Mahmood R
    Ecotoxicol Environ Saf; 2021 Jan; 208():111611. PubMed ID: 33396131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium meta-arsenite induced reactive oxygen species in human red blood cells: impaired antioxidant and membrane redox systems, haemoglobin oxidation, and morphological changes.
    Maheshwari N; Khan FH; Mahmood R
    Free Radic Res; 2017 May; 51(5):483-497. PubMed ID: 28480809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.
    Mohanty JG; Nagababu E; Rifkind JM
    Front Physiol; 2014; 5():84. PubMed ID: 24616707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin Binding to the Red Blood Cell (RBC) Membrane Is Associated with Decreased Cell Deformability.
    Barshtein G; Livshits L; Gural A; Arbell D; Barkan R; Pajic-Lijakovic I; Yedgar S
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Sepsis on the Erythrocyte.
    Bateman RM; Sharpe MD; Singer M; Ellis CG
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease.
    Gwozdzinski K; Pieniazek A; Gwozdzinski L
    Oxid Med Cell Longev; 2021; 2021():6639199. PubMed ID: 33708334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of oxidative damage to fish red blood cells by ozone.
    Fukunaga K; Nakazono N; Suzuki T; Takama K
    IUBMB Life; 1999 Dec; 48(6):631-4. PubMed ID: 10683769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of nitroglycerine on the redox status of rat erythrocytes and reticulocytes.
    Marković SD; Ognjanović BI; Stajn AS; Zikić RV; Saicić ZS; Radojicić RM; Spasić MB
    Physiol Res; 2006; 55(4):389-396. PubMed ID: 16238462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin redox reactions and oxidative stress.
    Rifkind JM; Nagababu E; Ramasamy S; Ravi LB
    Redox Rep; 2003; 8(5):234-7. PubMed ID: 14962355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells.
    Kriebardis AG; Antonelou MH; Stamoulis KE; Economou-Petersen E; Margaritis LH; Papassideri IS
    J Cell Mol Med; 2007; 11(1):148-55. PubMed ID: 17367509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Heme Degradation Products Are Biomarkers of Oxidative Stress and Linked to Impaired Membrane Integrity in Avian Red Blood Cells.
    Goodchild CG; DuRant SE
    Physiol Biochem Zool; 2020; 93(2):129-139. PubMed ID: 32027232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions.
    Rifkind JM; Mohanty JG; Nagababu E
    Front Physiol; 2014; 5():500. PubMed ID: 25642190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,5-Hexanedione modifies skeletal proteins of the red blood cells and increases the binding of hemoglobin to the membrane.
    Mallozzi C; Scorza G; Frontali N; Minetti M
    Biochem Pharmacol; 1989 Aug; 38(16):2703-11. PubMed ID: 2764990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.
    Oh JY; Stapley R; Harper V; Marques MB; Patel RP
    Transfusion; 2015 Dec; 55(12):2967-78. PubMed ID: 26202471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicological consequences of extracellular hemoglobin: biochemical and physiological perspectives.
    Buehler PW; D'Agnillo F
    Antioxid Redox Signal; 2010 Feb; 12(2):275-91. PubMed ID: 19659434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of nitric oxide biotransport to red blood cell in the presence of free hemoglobin and NO donor.
    Deonikar P; Abu-Soud HM; Kavdia M
    Microvasc Res; 2014 Sep; 95():15-25. PubMed ID: 24950305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells.
    van den Berg JJ; Op den Kamp JA; Lubin BH; Roelofsen B; Kuypers FA
    Free Radic Biol Med; 1992; 12(6):487-98. PubMed ID: 1601324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective on exogenous redox regulation mediated by transfused RBCs subject to the storage lesion.
    William N; Acker JP
    Transfus Apher Sci; 2024 Jun; 63(3):103929. PubMed ID: 38658294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.