These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23025404)

  • 1. Separation of leukocytes from blood using spiral channel with trapezoid cross-section.
    Wu L; Guan G; Hou HW; Bhagat AA; Han J
    Anal Chem; 2012 Nov; 84(21):9324-31. PubMed ID: 23025404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.
    Sarkar A; Hou HW; Mahan AE; Han J; Alter G
    Sci Rep; 2016 Mar; 6():23589. PubMed ID: 27026280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation.
    Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
    Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T
    Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood.
    Lu X; Tayebi M; Ai Y
    Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation.
    Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z
    Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement.
    Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z
    Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-Derived Airway Secretion Dissociation Technique To Isolate and Concentrate Immune Cells Using Closed-Loop Inertial Microfluidics.
    Ryu H; Choi K; Qu Y; Kwon T; Lee JS; Han J
    Anal Chem; 2017 May; 89(10):5549-5556. PubMed ID: 28402103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-stress Microfluidic Density-gradient Centrifugation for Blood Cell Sorting.
    Sun Y; Sethu P
    Biomed Microdevices; 2018 Aug; 20(3):77. PubMed ID: 30155743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.