These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23025404)

  • 21. Separation of cancer cells from a red blood cell suspension using inertial force.
    Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Matsuki N; Yamaguchi T
    Lab Chip; 2012 Nov; 12(21):4336-43. PubMed ID: 22899210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorting cells by their density.
    Norouzi N; Bhakta HC; Grover WH
    PLoS One; 2017; 12(7):e0180520. PubMed ID: 28723908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method for the simultaneous separation of peripheral blood mononuclear and polymorphonuclear cells in the dog.
    Strasser A; Kalmar E; Niedermüller H
    Vet Immunol Immunopathol; 1998 Mar; 62(1):29-35. PubMed ID: 9618866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical application of microfluidic leukocyte enrichment protocol in mild phenotype sickle cell disease (SCD).
    White WN; Raj A; Nguyen MD; Bertolone SJ; Sethu P
    Biomed Microdevices; 2009 Apr; 11(2):477-83. PubMed ID: 19083099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects.
    Tan JKS; Park SY; Leo HL; Kim S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.
    Mutlu BR; Smith KC; Edd JF; Nadar P; Dlamini M; Kapur R; Toner M
    Sci Rep; 2017 Aug; 7(1):9915. PubMed ID: 28855584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution.
    Liu Y; Zhao W; Cheng R; Puig A; Hodgson J; Egan M; Cooper Pope CN; Nikolinakos PG; Mao L
    Lab Chip; 2021 Jul; 21(14):2738-2750. PubMed ID: 34018527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of inflection point focusing and rare-cell separations from untreated whole blood.
    Lee D; Choi YH; Lee W
    Lab Chip; 2020 Aug; 20(16):2861-2871. PubMed ID: 32647850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration.
    Guzniczak E; Otto O; Whyte G; Chandra T; Robertson NA; Willoughby N; Jimenez M; Bridle H
    Biotechnol Bioeng; 2020 Jul; 117(7):2032-2045. PubMed ID: 32100873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic immunomagnetic cell separation from whole blood.
    Bhuvanendran Nair Gourikutty S; Chang CP; Puiu PD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():77-88. PubMed ID: 26773879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Confocal backscattering-based detection of leukemic cells in flowing blood samples.
    Greiner C; Hunter M; Rius F; Huang P; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):874-83. PubMed ID: 21638765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women.
    Huang R; Barber TA; Schmidt MA; Tompkins RG; Toner M; Bianchi DW; Kapur R; Flejter WL
    Prenat Diagn; 2008 Oct; 28(10):892-9. PubMed ID: 18821715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.