BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23025503)

  • 1. PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation.
    Zito E
    Antioxid Redox Signal; 2013 May; 18(13):1666-74. PubMed ID: 23025503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin.
    Zito E; Melo EP; Yang Y; Wahlander Å; Neubert TA; Ron D
    Mol Cell; 2010 Dec; 40(5):787-97. PubMed ID: 21145486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding.
    Konno T; Pinho Melo E; Lopes C; Mehmeti I; Lenzen S; Ron D; Avezov E
    J Cell Biol; 2015 Oct; 211(2):253-9. PubMed ID: 26504166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum.
    Rutkevich LA; Williams DB
    Mol Biol Cell; 2012 Jun; 23(11):2017-27. PubMed ID: 22496424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of peroxiredoxin-4 induces oligomerization and promotes interaction with proteins governing protein folding and endoplasmic reticulum stress.
    Elko EA; Manuel AM; White S; Zito E; van der Vliet A; Anathy V; Janssen-Heininger YMW
    J Biol Chem; 2021; 296():100665. PubMed ID: 33895140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.
    Mehmeti I; Lortz S; Elsner M; Lenzen S
    J Biol Chem; 2014 Sep; 289(39):26904-26913. PubMed ID: 25122762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and pathological views of peroxiredoxin 4.
    Fujii J; Ikeda Y; Kurahashi T; Homma T
    Free Radic Biol Med; 2015 Jun; 83():373-9. PubMed ID: 25656995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple ways to make disulfides.
    Bulleid NJ; Ellgaard L
    Trends Biochem Sci; 2011 Sep; 36(9):485-92. PubMed ID: 21778060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum.
    Hudson DA; Gannon SA; Thorpe C
    Free Radic Biol Med; 2015 Mar; 80():171-82. PubMed ID: 25091901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice.
    Zito E; Hansen HG; Yeo GS; Fujii J; Ron D
    Mol Cell; 2012 Oct; 48(1):39-51. PubMed ID: 22981861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis.
    Stocki P; Chapman DC; Beach LA; Williams DB
    J Biol Chem; 2014 Aug; 289(33):23086-23096. PubMed ID: 24990953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum.
    Tavender TJ; Springate JJ; Bulleid NJ
    EMBO J; 2010 Dec; 29(24):4185-97. PubMed ID: 21057456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol-disulfide milieu.
    Mehmeti I; Lortz S; Lenzen S
    Free Radic Biol Med; 2012 Oct; 53(7):1451-8. PubMed ID: 22921589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding.
    Kakihana T; Nagata K; Sitia R
    Antioxid Redox Signal; 2012 Apr; 16(8):763-71. PubMed ID: 22146055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of plant ER oxidoreductin 1 (ERO1) activity for efficient oxidative protein folding.
    Matsusaki M; Okuda A; Matsuo K; Gekko K; Masuda T; Naruo Y; Hirose A; Kono K; Tsuchi Y; Urade R
    J Biol Chem; 2019 Dec; 294(49):18820-18835. PubMed ID: 31685660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ero1 and redox homeostasis in the endoplasmic reticulum.
    Sevier CS; Kaiser CA
    Biochim Biophys Acta; 2008 Apr; 1783(4):549-56. PubMed ID: 18191641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, mechanism, and evolution of Ero1 family enzymes.
    Araki K; Inaba K
    Antioxid Redox Signal; 2012 Apr; 16(8):790-9. PubMed ID: 22145624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip.
    Ponsero AJ; Igbaria A; Darch MA; Miled S; Outten CE; Winther JR; Palais G; D'Autréaux B; Delaunay-Moisan A; Toledano MB
    Mol Cell; 2017 Sep; 67(6):962-973.e5. PubMed ID: 28918898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER.
    Uegaki K; Tokunaga Y; Inoue M; Takashima S; Inaba K; Takeuchi K; Ushioda R; Nagata K
    Cell Rep; 2023 Jul; 42(7):112742. PubMed ID: 37421625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4.
    Jain P; Dvorkin-Gheva A; Mollen E; Malbeteau L; Xie M; Jessa F; Dhavarasa P; Chung S; Brown KR; Jang GH; Vora P; Notta F; Moffat J; Hedley D; Boutros PC; Wouters BG; Koritzinsky M
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.