These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 23025686)
1. A nonlinear dynamic finite element approach for simulating muscular hydrostats. Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686 [TBL] [Abstract][Full Text] [Related]
2. A finite-element model for the mechanical analysis of skeletal muscles. Johansson T; Meier P; Blickhan R J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943 [TBL] [Abstract][Full Text] [Related]
3. A finite element simulation scheme for biological muscular hydrostats. Liang Y; McMeeking RM; Evans AG J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021 [TBL] [Abstract][Full Text] [Related]
4. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related]
5. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties. Hashemi SS; Asgari M; Rasoulian A Proc Inst Mech Eng H; 2020 Jun; 234(6):590-602. PubMed ID: 32133933 [TBL] [Abstract][Full Text] [Related]
6. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation. Wu T; Hung AP; Hunter P; Mithraratne K Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255 [TBL] [Abstract][Full Text] [Related]
7. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730 [TBL] [Abstract][Full Text] [Related]
9. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. Tang CY; Zhang G; Tsui CP J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310 [TBL] [Abstract][Full Text] [Related]
10. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges. Noël C Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138 [TBL] [Abstract][Full Text] [Related]
11. Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model. Pavan PG; Pachera P; Forestiero A; Natali AN Med Biol Eng Comput; 2017 Sep; 55(9):1683-1691. PubMed ID: 28188469 [TBL] [Abstract][Full Text] [Related]
12. Finite element modelling of contracting skeletal muscle. Oomens CW; Maenhout M; van Oijen CH; Drost MR; Baaijens FP Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1453-60. PubMed ID: 14561336 [TBL] [Abstract][Full Text] [Related]
13. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. Sun W; Chaikof EL; Levenston ME J Biomech Eng; 2008 Dec; 130(6):061003. PubMed ID: 19045532 [TBL] [Abstract][Full Text] [Related]
14. On a phenomenological model for fatigue effects in skeletal muscles. Böl M; Stark H; Schilling N J Theor Biol; 2011 Jul; 281(1):122-32. PubMed ID: 20211632 [TBL] [Abstract][Full Text] [Related]
15. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
16. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938 [TBL] [Abstract][Full Text] [Related]
17. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. Hernández-Gascón B; Grasa J; Calvo B; Rodríguez JF J Theor Biol; 2013 Oct; 335():108-18. PubMed ID: 23820034 [TBL] [Abstract][Full Text] [Related]
18. Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis. Mo F; Li J; Dan M; Liu T; Behr M J Biomech; 2019 Jun; 91():51-60. PubMed ID: 31101432 [TBL] [Abstract][Full Text] [Related]
19. Implementation of a new constitutive model for abdominal muscles. Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865 [TBL] [Abstract][Full Text] [Related]
20. Muscle-driven finite element simulation of human foot movements. Spyrou LA; Aravas N Comput Methods Biomech Biomed Engin; 2012; 15(9):925-34. PubMed ID: 21711216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]