These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23026153)

  • 21. Mass spectrometry investigation of nucleoside adducts of fatty acid hydroperoxides from oxidation of linolenic and linoleic acids.
    Cao G; Ding C; Yang Z; Wu P; Lu M; Guo J; Chen X; Hong Y; Cai Z
    J Chromatogr A; 2021 Jul; 1649():462236. PubMed ID: 34038777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A detailed identification study on high-temperature degradation products of oleic and linoleic acid methyl esters by GC-MS and GC-FTIR.
    Berdeaux O; Fontagné S; Sémon E; Velasco J; Sébédio JL; Dobarganes C
    Chem Phys Lipids; 2012 Apr; 165(3):338-47. PubMed ID: 22425579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Free radical oxidation of biological membrane lipids. I. Auto-oxidation of higher unsaturated fatty acids in various conditions].
    Kozlov IuP; Glushchenko NN; Obraztsov VV; Orlov SN; Kagan VE
    Biofizika; 1973; 18(6):1031-6. PubMed ID: 4805511
    [No Abstract]   [Full Text] [Related]  

  • 24. A non-canonical caleosin from Arabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity.
    Blée E; Flenet M; Boachon B; Fauconnier ML
    FEBS J; 2012 Oct; 279(20):3981-95. PubMed ID: 22913587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Riboflavin-photosensitized oxidation is enhanced by conjugation in unsaturated lipids.
    Cardoso DR; Scurachio RS; Santos WG; Homem-de-Mello P; Skibsted LH
    J Agric Food Chem; 2013 Mar; 61(9):2268-75. PubMed ID: 23402498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion.
    Ma T; Kobayashi T; Adachi S
    J Oleo Sci; 2013; 62(12):1003-8. PubMed ID: 24292352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prooxidant activity of oxidized alpha-tocopherol in vegetable oils.
    Chapman TM; Kim HJ; Min DB
    J Food Sci; 2009 Sep; 74(7):C536-42. PubMed ID: 19895457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological evaluations of fatty acid esters originated during storage of Prasaplai, a Thai traditional medicine.
    Tangyuenyongwatana P; Gritsanapan W
    Nat Prod Res; 2007 Sep; 21(11):990-7. PubMed ID: 17691048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidant activity of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate, from Petiveria alliacea L.
    Okada Y; Tanaka K; Sato E; Okajima H
    Org Biomol Chem; 2008 Mar; 6(6):1097-102. PubMed ID: 18327337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Canadian Society for Nutritional Sciences 1995 Young Scientist Award Lecture. Recent studies on the synthesis, beta-oxidation, and deficiency of linoleate and alpha-linolenate: are essential fatty acids more aptly named indispensable or conditionally dispensable fatty acids?
    Cunnane SC
    Can J Physiol Pharmacol; 1996 Jun; 74(6):629-39. PubMed ID: 8909772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic study on ROS production induced by oleic, linoleic, and gamma-linolenic acids in human and rat neutrophils.
    Hatanaka E; Levada-Pires AC; Pithon-Curi TC; Curi R
    Free Radic Biol Med; 2006 Oct; 41(7):1124-32. PubMed ID: 16962937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free radical oxidation of coriolic acid (13-(S)-hydroxy-9Z,11E-octadecadienoic acid).
    Manini P; Camera E; Picardo M; Napolitano A; d'Ischia M
    Chem Phys Lipids; 2005 Apr; 134(2):161-71. PubMed ID: 15784234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles.
    Yazu K; Yamamoto Y; Ukegawa K; Niki E
    Lipids; 1996 Mar; 31(3):337-40. PubMed ID: 8900464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modeling of methyl butanoate in shock tube.
    Huynh LK; Lin KC; Violi A
    J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural deuterium distribution in long-chain fatty acids is nonstatistical: a site-specific study by quantitative (2)H NMR spectroscopy.
    Billault I; Guiet S; Mabon F; Robins R
    Chembiochem; 2001 Jun; 2(6):425-31. PubMed ID: 11828473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal decomposition of methyl butanoate: ab initio study of a biodiesel fuel surrogate.
    Huynh LK; Violi A
    J Org Chem; 2008 Jan; 73(1):94-101. PubMed ID: 18052190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Autooxidation of a mixture of lemon essential oils, methyl linolenoate, and methyl oleinate].
    Misharina TA; Terenina MB; Krikunova NI; Medvedeva IB
    Prikl Biokhim Mikrobiol; 2010; 46(5):599-604. PubMed ID: 21061607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of tocopherols in model systems--lipooxygenase, unsaturated fatty acids and their esters.
    Gogolewski M; Nogala M
    Bull Acad Pol Sci Biol; 1976; 24(10):573-8. PubMed ID: 828072
    [No Abstract]   [Full Text] [Related]  

  • 39. [Free-radical oxidation of biological membrane lipids. V. Fluorescence of fatty acids and phospholipids].
    Orlov SN; Danilov VS; Malkov IuA; Rebrov VG
    Biofizika; 1975; 20(2):228-32. PubMed ID: 1148296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and mechanistic studies of allicin as an antioxidant.
    Okada Y; Tanaka K; Sato E; Okajima H
    Org Biomol Chem; 2006 Nov; 4(22):4113-7. PubMed ID: 17312965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.