These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 230263)
1. H-2 and non-H-2 determined strain variation in palatal shelf and tongue adenosine 3':5' cyclic monophosphate: a possible role in the etiology of steroid-induced cleft palate. Erickson RP; Butley MS; Sing CF J Immunogenet; 1979 Aug; 6(4):253-62. PubMed ID: 230263 [TBL] [Abstract][Full Text] [Related]
2. Genetic aspects of the effects of methylmercury in mice: the incidence of cleft palate and concentrations of adenosine 3':5' cyclic monophosphate in tongue and palatal shelf. Harper K; Burns R; Erickson RP Teratology; 1981 Jun; 23(3):397-401. PubMed ID: 6266065 [TBL] [Abstract][Full Text] [Related]
3. Palatal cytosol cortisol-binding protein associated with cleft palate susceptibility and H-2 genotype. Goldman AS; Katsumata M; Yaffe SJ; Gassner DL Nature; 1977 Feb; 265(5595):643-5. PubMed ID: 859566 [No Abstract] [Full Text] [Related]
4. Secalonic acid D-induced changes in palatal cyclic AMP and cyclic GMP in developing mice. Eldeib MM; Reddy CS Teratology; 1988 Apr; 37(4):343-52. PubMed ID: 2839909 [TBL] [Abstract][Full Text] [Related]
5. Experimental induction of palate shelf elevation in glutamate decarboxylase 67-deficient mice with cleft palate due to vertically oriented palatal shelf. Iseki S; Ishii-Suzuki M; Tsunekawa N; Yamada Y; Eto K; Obata K Birth Defects Res A Clin Mol Teratol; 2007 Oct; 79(10):688-95. PubMed ID: 17849453 [TBL] [Abstract][Full Text] [Related]
6. The CORT-GR signal transduction pathway and CORT-induced cleft palate in H-2 congenic mice. Jaskoll T; Choy HA; Chen H; Melnick M J Craniofac Genet Dev Biol; 1995; 15(2):57-65. PubMed ID: 7635930 [TBL] [Abstract][Full Text] [Related]
7. Novel insights into a retinoic-acid-induced cleft palate based on Rac1 regulation of the fibronectin arrangement. Tang Q; Li L; Lee MJ; Ge Q; Lee JM; Jung HS Cell Tissue Res; 2016 Mar; 363(3):713-22. PubMed ID: 26329303 [TBL] [Abstract][Full Text] [Related]
8. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates. Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249 [TBL] [Abstract][Full Text] [Related]
9. Association between palatal morphogenesis and Pax9 expression pattern in CL/Fr embryos with clefting during palatal development. Hamachi T; Sasaki Y; Hidaka K; Nakata M Arch Oral Biol; 2003 Aug; 48(8):581-7. PubMed ID: 12828987 [TBL] [Abstract][Full Text] [Related]
11. Genesis of hadacidin-induced cleft palate in hamster: morphogenesis, electron microscopy, and determination of DNA synthesis, cAMP, and enzyme acid phosphatase. Shah RM; Schuing R; Benkhaial G; Young AV; Burdett D Am J Anat; 1991 Sep; 192(1):55-68. PubMed ID: 1661065 [TBL] [Abstract][Full Text] [Related]
12. Hydrocortisone-induced embryotoxicity and embryonic drug disposition in H-2 congenic mice. Roberts LG; Hendrickx AG J Craniofac Genet Dev Biol; 1987; 7(4):341-56. PubMed ID: 3429612 [TBL] [Abstract][Full Text] [Related]
13. Corticosteroid-induced cleft palate in mice and H-2 haplotype: maternal and embryonic effects. Melnick M; Jaskoll T; Slavkin HC Immunogenetics; 1981; 13(5):443-50. PubMed ID: 7197664 [TBL] [Abstract][Full Text] [Related]
15. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice. Degitz SJ; Francis BM; Foley GL J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of growth and palatal shelf development in ICR mice after exposure to methylmercury. Yasuda Y; Datu AR; Hirata S; Fujimoto T Teratology; 1985 Oct; 32(2):273-86. PubMed ID: 4049286 [TBL] [Abstract][Full Text] [Related]
18. Genetic differences among the A/J X C57BL/6J recombinant inbred mouse lines and their degree of association with glucocorticoid-induced cleft palate. Liu SL; Erickson RP Genetics; 1986 Jul; 113(3):745-54. PubMed ID: 3525322 [TBL] [Abstract][Full Text] [Related]
19. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice. Lin C; Liu S; Ruan N; Chen J; Chen Y; Zhang Y; Zhang J Stem Cells Dev; 2024 Oct; 33(19-20):562-573. PubMed ID: 39119818 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility to phenytoin-induced cleft palate in mice is influenced by genes linked to H-2 and H-3. Goldman AS; Baker MK; Gasser DL Immunogenetics; 1983; 18(1):17-22. PubMed ID: 6862529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]