BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 23026300)

  • 1. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW
    J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties.
    Xiang G; He J; Li T; Zhuang J; Wang X
    Nanoscale; 2011 Sep; 3(9):3737-42. PubMed ID: 21804982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide supported Au-Ag alloy nanoparticles with different shapes and their high catalytic activities.
    Wu T; Ma J; Wang X; Liu Y; Xu H; Gao J; Wang W; Liu Y; Yan J
    Nanotechnology; 2013 Mar; 24(12):125301. PubMed ID: 23459126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step synthesis of graphene/polyallylamine-Au nanocomposites and their electrocatalysis toward oxygen reduction.
    Zhang Q; Ren Q; Miao Y; Yuan J; Wang K; Li F; Han D; Niu L
    Talanta; 2012 Jan; 89():391-5. PubMed ID: 22284507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites.
    Jiang J; Du X
    Nanoscale; 2014 Oct; 6(19):11303-9. PubMed ID: 25137352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.
    Wang L; Zhang Y; Cheng C; Liu X; Jiang H; Wang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18441-9. PubMed ID: 26238430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach.
    Tang XZ; Cao Z; Zhang HB; Liu J; Yu ZZ
    Chem Commun (Camb); 2011 Mar; 47(11):3084-6. PubMed ID: 21298137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles.
    Li H; Jo JK; Zhang LD; Ha CS; Suh H; Kim I
    Langmuir; 2010 Dec; 26(23):18442-53. PubMed ID: 21047097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.
    Ji Z; Shen X; Xu Y; Zhu G; Chen K
    J Colloid Interface Sci; 2014 Oct; 432():57-64. PubMed ID: 25080384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.
    Sher Shah MS; Park AR; Zhang K; Park JH; Yoo PJ
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3893-901. PubMed ID: 22788800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free synthesis of large anisotropic gold nanostructures on reduced graphene oxide.
    Wang J; Dong X; Xu R; Li S; Chen P; Chan-Park MB
    Nanoscale; 2012 May; 4(10):3055-9. PubMed ID: 22508548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
    Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z
    Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications.
    Jeon EK; Seo E; Lee E; Lee W; Um MK; Kim BS
    Chem Commun (Camb); 2013 Apr; 49(33):3392-4. PubMed ID: 23435315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties.
    Zhu C; Han L; Hu P; Dong S
    Nanoscale; 2012 Mar; 4(5):1641-6. PubMed ID: 22286065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent.
    Cui CH; Li HH; Yu SH
    Chem Commun (Camb); 2010 Feb; 46(6):940-2. PubMed ID: 20107657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels.
    Adhikari B; Biswas A; Banerjee A
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5472-82. PubMed ID: 22970805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.
    Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z
    Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth of Au nanocrystals on graphene oxide sheets.
    Qin Y; Li J; Kong Y; Li X; Tao Y; Li S; Wang Y
    Nanoscale; 2014; 6(3):1281-5. PubMed ID: 24323295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.